3.14.9 Problems 801 to 900

Table 3.697: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

11203

\[ {}\left (2 x y^{\prime }-y\right )^{2} = 8 x^{3} \]

11204

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

11205

\[ {}{y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

11206

\[ {}2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0 \]

11207

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

11208

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

11210

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

11211

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

11212

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

11213

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

11214

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

11215

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

11216

\[ {}\left (-y+x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \]

11217

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 x y^{\prime }-1 = 0 \]

11218

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \]

11219

\[ {}{\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \]

11220

\[ {}x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x = 0 \]

11221

\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

11222

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

11223

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

11224

\[ {}\left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right ) \]

11225

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2} \]

11226

\[ {}y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \]

11227

\[ {}{y^{\prime }}^{2} x^{3}+x^{2} y y^{\prime }+1 = 0 \]

11228

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

11229

\[ {}y = \left (1+x \right ) {y^{\prime }}^{2} \]

11230

\[ {}\left (-y+x y^{\prime }\right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \]

11231

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

11232

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

11233

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

11234

\[ {}y = x y^{\prime }+\frac {y {y^{\prime }}^{2}}{x^{2}} \]

11235

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{4}+y^{2} x^{2} \]

11236

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

11237

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

11238

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y-2\right ) y^{\prime }+y^{2} = 0 \]

11239

\[ {}x^{2} {y^{\prime }}^{2}-\left (-1+x \right )^{2} = 0 \]

11240

\[ {}8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (-y^{\prime }+1\right )^{3} \]

11241

\[ {}4 {y^{\prime }}^{2} = 9 x \]

11242

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

11404

\[ {}{x^{\prime }}^{2}+t x = \sqrt {t +1} \]

11584

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

12122

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

12123

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

12125

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

12127

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

12129

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

12130

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

12137

\[ {}{y^{\prime }}^{3}-{\mathrm e}^{2 x} y^{\prime } = 0 \]

12138

\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \]

12144

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

12145

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

12148

\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

12150

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \]

12161

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

12162

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

12163

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right )-y^{2} = 0 \]

12231

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

12233

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

12239

\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

12419

\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \]

12420

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

12421

\[ {}x y \left (-{y^{\prime }}^{2}+1\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \]

12453

\[ {}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}} \]

12479

\[ {}y = 2 x y^{\prime }+{y^{\prime }}^{2} \]

12480

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

12481

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

12482

\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \]

12483

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

12484

\[ {}y = x y^{\prime }+\sqrt {-{y^{\prime }}^{2}+1} \]

12486

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

12487

\[ {}y = x y^{\prime }-\frac {1}{{y^{\prime }}^{2}} \]

12541

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

12594

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

12595

\[ {}{y^{\prime }}^{2}-9 x y = 0 \]

12596

\[ {}{y^{\prime }}^{2} = x^{6} \]

14048

\[ {}{y^{\prime }}^{2}+y = 0 \]

14391

\[ {}t y^{\prime }-{y^{\prime }}^{3} = y \]

14392

\[ {}t y^{\prime }-y-2 \left (t y^{\prime }-y\right )^{2} = y^{\prime }+1 \]

14393

\[ {}t y^{\prime }-y-1 = {y^{\prime }}^{2}-y^{\prime } \]

14394

\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \]

14395

\[ {}1-2 t y^{\prime }+2 y = \frac {1}{{y^{\prime }}^{2}} \]

14396

\[ {}y = -t y^{\prime }+\frac {{y^{\prime }}^{5}}{5} \]

14397

\[ {}y = t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \]

14399

\[ {}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \]

14428

\[ {}y = t y^{\prime }+3 {y^{\prime }}^{4} \]

14430

\[ {}y-t y^{\prime } = -2 {y^{\prime }}^{3} \]

14431

\[ {}y-t y^{\prime } = -4 {y^{\prime }}^{2} \]

14992

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

14993

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

14994

\[ {}\sin \left (y^{\prime }\right ) = x \]

14995

\[ {}\ln \left (y^{\prime }\right ) = x \]

14996

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

14997

\[ {}{\mathrm e}^{y^{\prime }} = x \]

14998

\[ {}\tan \left (y^{\prime }\right ) = x \]

15087

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

15088

\[ {}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left ({\mathrm e}^{2 x}-1\right ) \]

15089

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \]

15090

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

15091

\[ {}{y^{\prime }}^{2}-\left (y+2 x \right ) y^{\prime }+x^{2}+x y = 0 \]

15092

\[ {}{y^{\prime }}^{3}+\left (2+x \right ) {\mathrm e}^{y} = 0 \]