# |
ODE |
Mathematica |
Maple |
\[ {}\left (2 x y^{\prime }-y\right )^{2} = 8 x^{3} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \] |
✗ |
✓ |
|
\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}\left (-y+x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 x y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \] |
✗ |
✓ |
|
\[ {}x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right ) \] |
✗ |
✗ |
|
\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} x^{3}+x^{2} y y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \] |
✓ |
✓ |
|
\[ {}y = \left (1+x \right ) {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}\left (-y+x y^{\prime }\right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \] |
✓ |
✗ |
|
\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {y {y^{\prime }}^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{4}+y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y-2\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-\left (-1+x \right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (-y^{\prime }+1\right )^{3} \] |
✗ |
✓ |
|
\[ {}4 {y^{\prime }}^{2} = 9 x \] |
✓ |
✓ |
|
\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \] |
✓ |
✓ |
|
\[ {}{x^{\prime }}^{2}+t x = \sqrt {t +1} \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2}-4 y = 0 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = 9 y^{4} \] |
✓ |
✓ |
|
\[ {}x^{2}+{y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \] |
✗ |
✓ |
|
\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y^{2} = 4 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-{\mathrm e}^{2 x} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \] |
✗ |
✓ |
|
\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right )-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x y \left (-{y^{\prime }}^{2}+1\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \] |
✓ |
✗ |
|
\[ {}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \] |
✓ |
✓ |
|
\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\sqrt {-{y^{\prime }}^{2}+1} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }-\frac {1}{{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-4 y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-9 x y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = x^{6} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime }-{y^{\prime }}^{3} = y \] |
✓ |
✓ |
|
\[ {}t y^{\prime }-y-2 \left (t y^{\prime }-y\right )^{2} = y^{\prime }+1 \] |
✓ |
✓ |
|
\[ {}t y^{\prime }-y-1 = {y^{\prime }}^{2}-y^{\prime } \] |
✓ |
✓ |
|
\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}1-2 t y^{\prime }+2 y = \frac {1}{{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y = -t y^{\prime }+\frac {{y^{\prime }}^{5}}{5} \] |
✓ |
✓ |
|
\[ {}y = t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \] |
✓ |
✓ |
|
\[ {}y = t y^{\prime }+3 {y^{\prime }}^{4} \] |
✓ |
✓ |
|
\[ {}y-t y^{\prime } = -2 {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}y-t y^{\prime } = -4 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}\cos \left (y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y^{\prime }} = 1 \] |
✓ |
✓ |
|
\[ {}\sin \left (y^{\prime }\right ) = x \] |
✓ |
✓ |
|
\[ {}\ln \left (y^{\prime }\right ) = x \] |
✓ |
✓ |
|
\[ {}\tan \left (y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y^{\prime }} = x \] |
✓ |
✓ |
|
\[ {}\tan \left (y^{\prime }\right ) = x \] |
✓ |
✓ |
|
\[ {}4 {y^{\prime }}^{2}-9 x = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left ({\mathrm e}^{2 x}-1\right ) \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-\left (y+2 x \right ) y^{\prime }+x^{2}+x y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}+\left (2+x \right ) {\mathrm e}^{y} = 0 \] |
✓ |
✓ |
|