3.15.1 Problems 1 to 26

Table 3.701: Higher order, non-linear and homogeneous

#

ODE

Mathematica

Maple

5858

\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

5885

\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

10160

\[ {}y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right ) = 0 \]

10162

\[ {}y^{\prime \prime \prime }-y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

10163

\[ {}y^{\prime \prime \prime }+a y y^{\prime \prime } = 0 \]

10165

\[ {}x^{2} y^{\prime \prime \prime }+x \left (y-1\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime } = 0 \]

10166

\[ {}y y^{\prime \prime \prime }-y^{\prime } y^{\prime \prime }+y^{3} y^{\prime } = 0 \]

10167

\[ {}4 y^{2} y^{\prime \prime \prime }-18 y y^{\prime } y^{\prime \prime }+15 {y^{\prime }}^{3} = 0 \]

10168

\[ {}9 y^{2} y^{\prime \prime \prime }-45 y y^{\prime } y^{\prime \prime }+40 {y^{\prime }}^{3} = 0 \]

10170

\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2} = 0 \]

10171

\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-\left (3 y^{\prime }+a \right ) {y^{\prime \prime }}^{2} = 0 \]

10172

\[ {}y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {b^{2} {y^{\prime \prime }}^{2}+1} = 0 \]

10173

\[ {}y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime } = 0 \]

10174

\[ {}y^{\prime } \left (f^{\prime \prime \prime }\left (x \right ) y^{\prime }+3 f^{\prime \prime }\left (x \right ) y^{\prime \prime }+3 f^{\prime }\left (x \right ) y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime \prime \prime }\right )-y^{\prime \prime } f y^{\prime \prime \prime }+{y^{\prime }}^{3} \left (f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right ) y^{\prime \prime }\right )+2 q \left (x \right ) {y^{\prime }}^{2} \sin \left (y\right )+\left (q \left (x \right ) y^{\prime \prime }-q^{\prime }\left (x \right ) y^{\prime }\right ) \cos \left (y\right ) = 0 \]

10175

\[ {}3 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

10176

\[ {}9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime } = 0 \]

10178

\[ {}y^{\prime \prime \prime } = f \left (y\right ) \]

11327

\[ {}2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \]

12203

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

12499

\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \]

12500

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \]

13490

\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

13535

\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

15197

\[ {}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

15208

\[ {}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

15221

\[ {}y^{\prime \prime \prime } = 3 y y^{\prime } \]