# |
ODE |
Mathematica |
Maple |
\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime }+a y y^{\prime \prime } = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime \prime }+x \left (y-1\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime \prime }-y^{\prime } y^{\prime \prime }+y^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{2} y^{\prime \prime \prime }-18 y y^{\prime } y^{\prime \prime }+15 {y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{2} y^{\prime \prime \prime }-45 y y^{\prime } y^{\prime \prime }+40 {y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-\left (3 y^{\prime }+a \right ) {y^{\prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {b^{2} {y^{\prime \prime }}^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime } = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } \left (f^{\prime \prime \prime }\left (x \right ) y^{\prime }+3 f^{\prime \prime }\left (x \right ) y^{\prime \prime }+3 f^{\prime }\left (x \right ) y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime \prime \prime }\right )-y^{\prime \prime } f y^{\prime \prime \prime }+{y^{\prime }}^{3} \left (f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right ) y^{\prime \prime }\right )+2 q \left (x \right ) {y^{\prime }}^{2} \sin \left (y\right )+\left (q \left (x \right ) y^{\prime \prime }-q^{\prime }\left (x \right ) y^{\prime }\right ) \cos \left (y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}3 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = f \left (y\right ) \] |
✗ |
✗ |
|
\[ {}2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \] |
✓ |
✗ |
|
\[ {}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = 3 y y^{\prime } \] |
✗ |
✓ |
|