3.18.2 Problems 101 to 128

Table 3.717: Second order, non-linear and non-homogeneous

#

ODE

Mathematica

Maple

11343

\[ {}x \left (2 y+x \right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

11344

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

12172

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

12173

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

12180

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

12224

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

12242

\[ {}y y^{\prime \prime } = 1 \]

12269

\[ {}x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

12270

\[ {}\frac {x y^{\prime \prime }}{y+1}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (y+1\right )^{2}} = x \sin \left (x \right ) \]

12272

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y\right ) y^{\prime } = \cos \left (x \right ) \]

12274

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

12497

\[ {}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]

12539

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

13250

\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \]

13480

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

13483

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

13499

\[ {}y^{\prime } y^{\prime \prime } = 1 \]

13514

\[ {}2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

14050

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

14051

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

14626

\[ {}{\mathrm e}^{-2 t} \left (y y^{\prime \prime }-{y^{\prime }}^{2}\right )-2 t \left (t +1\right ) y = 0 \]

14892

\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

15184

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

15202

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15215

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15216

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15217

\[ {}y^{3} y^{\prime \prime } = -1 \]

15454

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]