3.20.5 Problems 401 to 500

Table 3.737: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

1742

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

1743

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

1744

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

1754

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

1755

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

1756

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

1757

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

1758

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]

1759

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{\frac {5}{2}} {\mathrm e}^{-2 t} \]

1760

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {t +1} \]

1761

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]

1764

\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \]

2088

\[ {}y^{\prime \prime }-4 y = 0 \]

2089

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 0 \]

2090

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

2091

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = 0 \]

2092

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

2093

\[ {}y^{\prime \prime }-2 y^{\prime }-y = 0 \]

2094

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

2095

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

2096

\[ {}2 y^{\prime \prime }+2 y^{\prime }-y = 0 \]

2097

\[ {}2 y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }+y = 0 \]

2098

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

2099

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 0 \]

2100

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime }+8 y = 0 \]

2101

\[ {}y^{\prime \prime \prime }-7 y^{\prime }+6 y = 0 \]

2102

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

2103

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-17 y^{\prime }+60 y = 0 \]

2104

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+23 y^{\prime }-15 y = 0 \]

2105

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y = 0 \]

2106

\[ {}2 y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-20 y^{\prime \prime }+27 y^{\prime }+18 y = 0 \]

2107

\[ {}12 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

2108

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = 0 \]

2109

\[ {}4 y^{\prime \prime \prime }+2 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

2110

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y = 0 \]

2111

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-7 y^{\prime \prime }-8 y^{\prime }+12 y = 0 \]

2112

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+15 y^{\prime \prime }+4 y^{\prime }-12 y = 0 \]

2113

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime }-13 y^{\prime \prime \prime }-13 y^{\prime \prime }+36 y^{\prime }+36 y = 0 \]

2114

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-15 y^{\prime \prime \prime }-19 y^{\prime \prime }+30 y^{\prime } = 0 \]

2115

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

2116

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime }+2 y^{\prime } = 0 \]

2117

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

2118

\[ {}y^{\prime \prime } = 0 \]

2119

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

2120

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

2121

\[ {}y^{\prime \prime \prime \prime } = 0 \]

2122

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

2123

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

2124

\[ {}4 y^{\left (5\right )}-3 y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

2125

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+16 y^{\prime }-12 y = 0 \]

2126

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

2127

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

2128

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

2129

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

2130

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }-20 y = 0 \]

2131

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

2132

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-8 y^{\prime }+8 y = 0 \]

2133

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-6 y^{\prime }+2 y = 0 \]

2134

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }-4 y = 0 \]

2135

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+10 y^{\prime }-15 y = 0 \]

2136

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+11 y^{\prime }-40 y = 0 \]

2137

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-12 y^{\prime }+16 y = 0 \]

2138

\[ {}4 y^{\prime \prime \prime }+12 y^{\prime \prime }-3 y^{\prime }+14 y = 0 \]

2139

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }-6 y^{\prime \prime }+8 y^{\prime }-8 y = 0 \]

2140

\[ {}y^{\prime \prime }-4 y = 3 \cos \left (x \right ) \]

2141

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \]

2142

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x} \]

2143

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x} \]

2144

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

2145

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

2146

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

2147

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \]

2148

\[ {}y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x} \]

2149

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right ) \]

2150

\[ {}y^{\prime \prime }-y^{\prime }-6 y = x^{3} \]

2151

\[ {}-2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x} \]

2152

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

2153

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = x^{2}+8 \]

2154

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right ) \]

2155

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-12 y = x +{\mathrm e}^{2 x} \]

2156

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = {\mathrm e}^{4 x} \sin \left (x \right ) \]

2157

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x} \]

2158

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} x \]

2159

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \sin \left (k x \right ) \]

2160

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right ) \]

2161

\[ {}y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \]

2162

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \]

2163

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = \left (2 x^{2}+x \right ) {\mathrm e}^{-2 x}+5 \cos \left (3 x \right ) \]

2164

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

2165

\[ {}y^{\prime \prime \prime \prime }+4 y = 5 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

2166

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]

2167

\[ {}y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2} \]

2168

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

2169

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right ) \]

2170

\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]

2171

\[ {}y^{\prime \prime }+y = 3 x \sin \left (x \right ) \]

2172

\[ {}2 y^{\prime \prime }+5 y^{\prime }-3 y = \sin \left (x \right )-8 x \]

2173

\[ {}8 y^{\prime \prime }-y = x \,{\mathrm e}^{-\frac {x}{2}} \]

2174

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

2175

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} \]