3.20.6 Problems 501 to 600

Table 3.739: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

2176

\[ {}y^{\prime \prime }+4 y = x^{2} \]

2177

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x} \]

2178

\[ {}y^{\prime \prime }+y = 4 \sin \left (2 x \right ) \]

2179

\[ {}y^{\prime \prime }+4 y = 2 x -2 \sin \left (2 x \right ) \]

2180

\[ {}y^{\prime \prime }-y = 3 x +5 \,{\mathrm e}^{x} \]

2181

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{x}+\sin \left (4 x \right ) \]

2182

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime } = \cos \left (2 x \right ) \]

2183

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = {\mathrm e}^{3 x} \]

2184

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

2185

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

2186

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \]

2187

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

2188

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (x \right ) \]

2189

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

2190

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

2191

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right ) \tan \left (x \right ) \]

2192

\[ {}y^{\prime \prime }-2 y = \sin \left (2 x \right ) {\mathrm e}^{-x} \]

2193

\[ {}y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right ) \]

2194

\[ {}y^{\prime \prime }+9 y = \csc \left (2 x \right ) \]

2195

\[ {}y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2} \]

2196

\[ {}y^{\prime \prime \prime }+y^{\prime } = \tan \left (x \right ) \]

2197

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \]

2199

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

2200

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

2201

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

2202

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x} \]

2203

\[ {}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x} \]

2204

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

2205

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x} \]

2206

\[ {}y^{\prime \prime }+2 y = \sin \left (x \right ) \]

2207

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \]

2208

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right ) \]

2209

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

2210

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

2211

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y = \sin \left (x \right )-{\mathrm e}^{4 x} \]

2212

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 4 \,{\mathrm e}^{x}+3 \cos \left (2 x \right ) \]

2213

\[ {}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \]

2214

\[ {}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right ) \]

2215

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

2216

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x} \]

2217

\[ {}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x} \]

2218

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \]

2219

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \]

2220

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

2221

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }-5 y^{\prime } = x^{2} {\mathrm e}^{-x} \]

2222

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

2223

\[ {}y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right ) \]

2224

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = {\mathrm e}^{2 x} \left (x -3\right ) \]

2225

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = \sin \left (3 x \right )+x \,{\mathrm e}^{x} \]

2226

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x^{2} {\mathrm e}^{2 x} \]

2227

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2}+\cos \left (x \right ) \]

2228

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }+2 y = \sin \left (2 x \right ) \]

2229

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{3}-\frac {\cos \left (2 x \right )}{2} \]

2230

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = \cos \left (x \right ) {\mathrm e}^{-2 x} \]

2231

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right ) \]

2232

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right ) \]

2233

\[ {}y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) x^{2} \]

2234

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

2235

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) x^{2} \]

2236

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) x^{2} \]

2237

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

2238

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2} \]

2239

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = {\mathrm e}^{x} x^{2} \]

2240

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

2241

\[ {}y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right ) \]

2242

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right ) \]

2243

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) x^{2} \]

2244

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

2245

\[ {}y^{\prime \prime }-y = \sin \left (2 x \right ) x \]

2246

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

2247

\[ {}y^{\prime \prime }-y^{\prime } = \sin \left (x \right ) {\mathrm e}^{2 x} x \]

2248

\[ {}y^{\prime \prime }-4 y = \cos \left (x \right ) {\mathrm e}^{2 x} x \]

2249

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

2273

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

2274

\[ {}y^{\prime \prime } = k^{2} y \]

2275

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

2295

\[ {}y^{\prime \prime } = y \]

2301

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]

2311

\[ {}x^{\prime \prime }-k^{2} x = 0 \]

2513

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]

2514

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]

2515

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

2516

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]

2517

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

2518

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

2519

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

2520

\[ {}y^{\prime \prime \prime }-12 y^{\prime }+16 y = 32 x -8 \]

2525

\[ {}y^{\prime \prime }-y = x^{n} \]

2526

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

2587

\[ {}y^{\prime \prime }-25 y = 0 \]

2588

\[ {}y^{\prime \prime }+4 y = 0 \]

2589

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

2592

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

2593

\[ {}y^{\prime \prime }-9 y = 0 \]

2599

\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0 \]

2600

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

2601

\[ {}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

2602

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

2603

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

2613

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]