3.20.10 Problems 901 to 1000

Table 3.747: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

5136

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 8 \]

5137

\[ {}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x} \]

5138

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x} \]

5139

\[ {}y^{\prime \prime }+25 y = 5 x^{2}+x \]

5140

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right ) \]

5141

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \]

5142

\[ {}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3 \]

5143

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x} \]

5144

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x} \]

5145

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18 \]

5146

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right ) \]

5147

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right ) \]

5148

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right ) \]

5149

\[ {}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x} \]

5150

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2} \]

5151

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x} \]

5152

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1 \]

5153

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

5154

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t} \]

5155

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right ) \]

5156

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right ) \]

5157

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right ) \]

5158

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x \]

5159

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right ) \]

5160

\[ {}y^{\prime \prime } = 3 \sin \left (x \right )-4 y \]

5161

\[ {}\frac {x^{\prime \prime }}{2} = -48 x \]

5162

\[ {}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right ) \]

5163

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \]

5164

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

5165

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right ) \]

5166

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \]

5167

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t} \]

5168

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18 \]

5169

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \]

5170

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

5171

\[ {}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x} \]

5175

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1 \]

5176

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x} \]

5177

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right ) \]

5178

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x} \]

5179

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \]

5183

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 1+{\mathrm e}^{x} \]

5184

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (x \right ) \]

5185

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \]

5186

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

5187

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

5188

\[ {}x^{\prime \prime }+4 x = \sin \left (2 t \right )^{2} \]

5191

\[ {}y^{\prime \prime \prime \prime } = 5 x \]

5192

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}} \]

5193

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

5194

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

5195

\[ {}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x} \]

5196

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

5203

\[ {}y^{\prime \prime }-y = 0 \]

5204

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]

5205

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]

5206

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (2 x \right ) \]

5207

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

5208

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

5209

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-2 x} \]

5210

\[ {}y^{\prime \prime }+5 y^{\prime }-3 y = \operatorname {Heaviside}\left (x -4\right ) \]

5211

\[ {}y^{\prime \prime \prime }-y = 5 \]

5212

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

5213

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} x^{2} \]

5214

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 0 \]

5215

\[ {}q^{\prime \prime }+9 q^{\prime }+14 q = \frac {\sin \left (t \right )}{2} \]

5230

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

5232

\[ {}y^{\prime \prime }-y = 0 \]

5233

\[ {}y^{\prime \prime }-y = 4-x \]

5234

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

5235

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \left (1-x \right ) {\mathrm e}^{x} \]

5348

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

5349

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

5350

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x} \]

5351

\[ {}y^{\prime \prime }+9 y = x \cos \left (x \right ) \]

5358

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

5359

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0 \]

5360

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

5361

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0 \]

5362

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

5363

\[ {}y^{\prime \prime }+25 y = 0 \]

5364

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

5365

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

5366

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

5367

\[ {}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

5368

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

5369

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]

5370

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 5 \]

5371

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 5 \]

5372

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x \]

5373

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]

5374

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

5375

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

5376

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

5377

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

5378

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

5379

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

5380

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

5381

\[ {}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2} \]

5382

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}} \]