3.20.11 Problems 1001 to 1100

Table 3.749: Second or higher order ODE with constant coefficients




#

ODE

Mathematica

Maple





5383

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \]





5384

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]





5385

\[ {}y^{\prime \prime }+2 y = 2+{\mathrm e}^{x} \]





5386

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right ) \]





5387

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right ) \]





5388

\[ {}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \]





5389

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8 \]





5390

\[ {}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 x \cos \left (x \right ) \]





5391

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 \,{\mathrm e}^{2 x} x +{\mathrm e}^{2 x} \]





5392

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \]





5393

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]





5394

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} x \]





5395

\[ {}y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right ) \]





5396

\[ {}y^{\prime \prime \prime }+y = \cos \left (x \right ) \]





5397

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]





5398

\[ {}y^{\prime \prime }+5 y = \cos \left (x \sqrt {5}\right ) \]





5399

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right ) \]





5400

\[ {}y^{\prime \prime }-y = x^{2} \]





5401

\[ {}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \]





5402

\[ {}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]





5403

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}} \]





5404

\[ {}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x} \]





5405

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \]





5432

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]





5681

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]





5682

\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]





5683

\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \]





5684

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]





5685

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]





5686

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]





5687

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]





5688

\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]





5689

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]





5690

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]





5692

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]





5693

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]





5694

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]





5695

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]





5696

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]





5697

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0





5698

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0





5699

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0





5700

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0





5701

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0





5702

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0





5703

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0





5704

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]





5705

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]





5706

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]





5707

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (-1+t \right ) \]





5708

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]





5709

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (-1+t \right ) \]





5710

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]





5711

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]





5712

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (-1+t \right )+\delta \left (t -2\right ) \]





5713

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]





5810

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]





5849

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]





5850

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]





5851

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]





5852

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1 \]





5853

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{2 x} x \]





5854

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]





5861

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]





5862

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]





5863

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]





5866

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]





5868

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]





5869

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]





5870

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]





5871

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]





5872

\[ {}y^{\prime \prime }+4 y = x^{2} \]





5873

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]





5886

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]





5913

\[ {}y^{\prime \prime } = 2+x \]





5914

\[ {}y^{\prime \prime \prime } = x^{2} \]





5917

\[ {}y^{\prime \prime }-y = 0 \]





5918

\[ {}y^{\prime \prime }+4 y = 0 \]





5919

\[ {}y^{\prime \prime }+k^{2} y = 0 \]





5921

\[ {}y^{\prime \prime } = 3 x +1 \]





5944

\[ {}y^{\prime \prime }-4 y = 0 \]





5945

\[ {}3 y^{\prime \prime }+2 y = 0 \]





5946

\[ {}y^{\prime \prime }+16 y = 0 \]





5947

\[ {}y^{\prime \prime } = 0 \]





5948

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]





5949

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]





5950

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]





5951

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]





5952

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]





5953

\[ {}y^{\prime \prime }+y = 0 \]





5954

\[ {}y^{\prime \prime }+y = 0 \]





5955

\[ {}y^{\prime \prime }+y = 0 \]





5956

\[ {}y^{\prime \prime }+y = 0 \]





5957

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]





5958

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]





5959

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]





5960

\[ {}y^{\prime \prime }+10 y = 0 \]





5961

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]





5962

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]





5963

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]