3.20.15 Problems 1401 to 1500

Table 3.757: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

9343

\[ {}y^{\prime \prime }+l y = 0 \]

9368

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

9369

\[ {}y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0 \]

9397

\[ {}y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y = 0 \]

9776

\[ {}y^{\prime \prime \prime }-\lambda y = 0 \]

9779

\[ {}y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0 \]

9780

\[ {}y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0 \]

9791

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

9792

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0 \]

9793

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x} = 0 \]

9794

\[ {}y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0 \]

9802

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0 \]

9859

\[ {}y^{\prime \prime \prime \prime } = 0 \]

9860

\[ {}y^{\prime \prime \prime \prime }+4 y-f = 0 \]

9861

\[ {}y^{\prime \prime \prime \prime }+\lambda y = 0 \]

9862

\[ {}y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}} = 0 \]

9863

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y-\cosh \left (a x \right ) = 0 \]

9864

\[ {}y^{\prime \prime \prime \prime }+\left (\lambda +1\right ) a^{2} y^{\prime \prime }+\lambda \,a^{4} y = 0 \]

9869

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right ) = 0 \]

9871

\[ {}4 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+11 y^{\prime \prime }-3 y^{\prime }-4 \cos \left (x \right ) = 0 \]

9899

\[ {}f \left (y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y\right )+2 \operatorname {df} \left (y^{\prime \prime \prime }-a^{2} y^{\prime }\right ) = 0 \]

9900

\[ {}f y^{\prime \prime \prime \prime } = 0 \]

9902

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \left (x \right )-c \cos \left (x \right ) = 0 \]

9903

\[ {}y^{\left (6\right )}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right ) = 0 \]

9906

\[ {}y^{\left (5\right )}+a y^{\prime \prime \prime \prime }-f = 0 \]

9908

\[ {}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0 \]

10169

\[ {}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

10825

\[ {}y^{\prime \prime }+a y = 0 \]

10835

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

11243

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

11244

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

11245

\[ {}y^{\prime \prime \prime }-y^{\prime } = 0 \]

11246

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

11247

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

11248

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

11249

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0 \]

11250

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

11251

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

11252

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0 \]

11253

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

11254

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}} \]

11255

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \]

11256

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

11257

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

11258

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

11259

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

11260

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

11261

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

11262

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

11263

\[ {}y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right ) \]

11264

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} x -\sin \left (x \right )^{2} \]

11265

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x \]

11266

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \]

11267

\[ {}y^{\prime \prime \prime }-y = x^{2} \]

11268

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \left (x \right ) \]

11269

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4 \]

11270

\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

11271

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right ) \]

11276

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \cos \left (x \right )-{\mathrm e}^{2 x} \]

11277

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

11278

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x} \]

11279

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x} \]

11280

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

11282

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x \]

11283

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

11284

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

11285

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x} \]

11286

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

11288

\[ {}y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2} \]

11315

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

11352

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

11357

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

11362

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]

11420

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

11436

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

11437

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

11438

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

11439

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

11440

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

11441

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

11442

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

11443

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

11444

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]

11445

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]

11446

\[ {}x^{\prime \prime }+9 x = 0 \]

11447

\[ {}x^{\prime \prime }-12 x = 0 \]

11448

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]

11449

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]

11450

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

11451

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]

11452

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \]

11453

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \]

11454

\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \]

11455

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \]

11456

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \]

11457

\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \]

11458

\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \]

11459

\[ {}x^{\prime \prime }+x^{\prime }+x = \left (2+t \right ) \sin \left (\pi t \right ) \]

11460

\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \]

11461

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \]