3.20.14 Problems 1301 to 1400

Table 3.755: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

6701

\[ {}y^{\prime \prime }+y = \delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \]

6702

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \]

6703

\[ {}y^{\prime \prime }+2 y^{\prime } = \delta \left (-1+t \right ) \]

6704

\[ {}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right ) \]

6705

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -2 \pi \right ) \]

6706

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (-1+t \right ) \]

6707

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right ) \]

6708

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (t -4\right ) \]

6709

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

6710

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right ) \]

6832

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

6861

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

6862

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

6863

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

6864

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

7037

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

7038

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

7039

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

7040

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

7084

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

7085

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

7086

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

7087

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

7098

\[ {}y^{\prime \prime } = 0 \]

7099

\[ {}y^{\prime \prime } = 1 \]

7100

\[ {}y^{\prime \prime } = f \left (t \right ) \]

7101

\[ {}y^{\prime \prime } = k \]

7104

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

7105

\[ {}y y^{\prime \prime } = 0 \]

7109

\[ {}y^{2} y^{\prime \prime } = 0 \]

7114

\[ {}a y y^{\prime \prime }+b y = 0 \]

7127

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

7132

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7133

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7134

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7191

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

7193

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7194

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7195

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7196

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7197

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7198

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7199

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7200

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7201

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7202

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7203

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7204

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]

7292

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

7309

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (2+x \right ) {\mathrm e}^{4 x} \]

7310

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]

7390

\[ {}y^{\prime \prime } = 0 \]

7391

\[ {}{y^{\prime \prime }}^{2} = 0 \]

7392

\[ {}{y^{\prime \prime }}^{n} = 0 \]

7393

\[ {}a y^{\prime \prime } = 0 \]

7394

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

7395

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

7396

\[ {}y^{\prime \prime } = 1 \]

7397

\[ {}{y^{\prime \prime }}^{2} = 1 \]

7398

\[ {}y^{\prime \prime } = x \]

7399

\[ {}{y^{\prime \prime }}^{2} = x \]

7400

\[ {}{y^{\prime \prime }}^{3} = 0 \]

7401

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

7404

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

7407

\[ {}y^{\prime \prime }+y^{\prime } = x \]

7410

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7413

\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \]

7414

\[ {}y^{\prime \prime }+y^{\prime }+y = x \]

7415

\[ {}y^{\prime \prime }+y^{\prime }+y = 1+x \]

7416

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \]

7417

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \]

7418

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

7419

\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right ) \]

7420

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

7421

\[ {}y^{\prime \prime }+y^{\prime } = x \]

7422

\[ {}y^{\prime \prime }+y^{\prime } = 1+x \]

7423

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

7424

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

7425

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

7426

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

7427

\[ {}y^{\prime \prime }+y = 1 \]

7428

\[ {}y^{\prime \prime }+y = x \]

7429

\[ {}y^{\prime \prime }+y = 1+x \]

7430

\[ {}y^{\prime \prime }+y = x^{2}+x +1 \]

7431

\[ {}y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \]

7432

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

7433

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

7483

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \]

7884

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

7997

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

8282

\[ {}u^{\prime \prime }+2 u^{\prime }+u = 0 \]

8314

\[ {}y^{\prime \prime } = 0 \]

9335

\[ {}y^{\prime \prime } = 0 \]

9336

\[ {}y^{\prime \prime }+y = 0 \]

9337

\[ {}y^{\prime \prime }+y-\sin \left (n x \right ) = 0 \]

9338

\[ {}y^{\prime \prime }+y-a \cos \left (b x \right ) = 0 \]

9339

\[ {}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0 \]

9340

\[ {}y^{\prime \prime }-y = 0 \]

9341

\[ {}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0 \]

9342

\[ {}y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0 \]