3.20.19 Problems 1801 to 1900

Table 3.765: Second or higher order ODE with constant coefficients




#

ODE

Mathematica

Maple





12337

y+4y={8t0t<π28ππ2t





12338

y+4π2y=3δ(t13)δ(1+t)





12339

y+2y+2y=3δ(1+t)





12340

y+4y+29y=5δ(tπ)5δ(t2π)





12341

y+3y+2y=1δ(1+t)





12342

4y+4y+y=et2δ(1+t)





12343

y7y+6y=δ(1+t)





12345

y+y+4y+4y=8





12346

y2yy+2y=4t





12347

yy+4y4y=8e2t5et





12348

y5y+yy=t2+2t10





12349

y5y+4y=12Heaviside(t)12Heaviside(1+t)





12350

y16y=32Heaviside(t)32Heaviside(tπ)





12356

y+2y+y=1





12357

y2y+5y=et





12358

y3y7y=4





12359

y+3y+3y+y=5





12360

3y+5y2y=3t2





12361

y=2y4y+sin(t)





12396

y2y+y=x32ex





12397

y+4y=2sec(2x)





12399

y+y=f(x)





12413

y+α2y=0





12414

yα2y=0





12415

y+βy+γy=0





12423

y2ky+k2y=ex





12489

y2yy+2y=0





12492

y=a2y





12501

y=9y





12502

y+y=0





12503

yy=0





12504

y+12y=7y





12505

y4y+4y=0





12506

y+2y+10y=0





12507

y+3y2y=0





12508

4y12y+9y=0





12509

y+y+y=0





12510

y5y+4y=0





12511

y2yy+2y=0





12512

y3ay+3a2ya3y=0





12513

y(5)4y=0





12514

y+2y+9y=0





12515

y8y+16y=0





12516

y+y=0





12517

ya4y=0





12518

y7y+12y=x





12519

sa2s=t+1





12520

y+y2y=8sin(2x)





12521

yy=5x+2





12522

y2ay+a2y=ex





12523

y+6y+5y=e2x





12524

y+9y=6e3x





12525

y3y=26x





12526

y2y+3y=cos(x)ex





12527

y+4y=2sin(2x)





12528

y4y+5y2y=2x+3





12529

ya4y=5a4eaxsin(ax)





12530

y+2a2y+a4y=8cos(ax)





12531

y+2hy+n2y=0





12532

y+n2y=hsin(rx)





12533

y7y+6y=sin(x)





12534

y+y=sec(x)





12535

y+y=1cos(2x)32





12542

y+y=sec(x)





12545

y4y=sin(2x)e2x





12577

y3y+2y=0





12587

y3y10y=0





12588

y+2y+y=0





12589

y7y+12y=0





12599

yy6y=0





12601

yy=0





12604

yy2y=0





12605

yy2y=0





12606

yy2y=0





12607

yy2y=0





12744

3y2y+4y=x





12750

yy=0





12751

y+y=0





12754

yy=0





12755

y+y=0





12757

y4y=31





12758

y+9y=27x+18





12760

4y+4y3y=0





12761

y4y+6y4y=0





12762

y16y=0





12763

y+16y=0





12764

y4y+8y8y+4y=0





12765

y8y=0





12766

36y12y11y+2y+y=0





12767

y(5)3y+3y3y+2y=0





12768

y(5)y+y+35y+16y52y=0





12769

y(8)+8y+16y=0





12770

y+αy=0





12771

y+(34i)y+(4+12i)y+12y=0





12772

y+(3i)y+(4+3i)y=0





12774

y6y+13y12y+4y=2ex4e2x





12775

y+4y=24x26x+14+32cos(2x)





12776

y+2y+y=3+cos(2x)





12777

y3y+3yy=6x20120exx2





12778

y6y+21y26y=36e2xsin(3x)