3.20.18 Problems 1701 to 1800

Table 3.763: Second or higher order ODE with constant coefficients




#

ODE

Mathematica

Maple





12032

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]





12033

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]





12034

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]





12035

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]





12036

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]





12037

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]





12038

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]





12039

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]





12040

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]





12041

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]





12042

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]





12043

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \]





12044

\[ {}x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t} \]





12045

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right ) \]





12046

\[ {}x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right ) \]





12047

\[ {}x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t} \]





12054

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]





12055

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]





12056

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]





12058

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]





12070

\[ {}a y^{\prime \prime }+\left (-a +b \right ) y^{\prime }+c y = 0 \]





12164

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]





12165

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]





12166

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]





12167

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]





12169

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]





12171

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]





12174

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]





12176

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]





12177

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]





12182

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]





12186

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]





12187

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]





12188

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]





12189

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \cos \left (x \right ) x \]





12193

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]





12194

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]





12197

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]





12198

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]





12199

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]





12201

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]





12202

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]





12205

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]





12225

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]





12235

\[ {}y^{\prime \prime \prime } = 1 \]





12237

\[ {}y^{\prime \prime } = x^{2}+y \]





12244

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]





12245

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]





12246

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]





12247

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]





12283

\[ {}y^{\prime \prime }+9 y = 0 \]





12284

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]





12285

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





12286

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]





12287

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]





12288

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]





12289

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]





12290

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]





12291

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]





12292

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]





12293

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]





12294

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]





12295

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]





12296

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]





12297

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]





12298

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]





12299

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]





12300

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]





12301

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]





12302

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]





12303

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]





12304

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]





12305

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]





12306

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]





12307

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]





12308

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]





12309

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]





12310

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]





12311

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]





12312

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]





12313

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]





12314

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]





12315

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]





12316

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2+t \]





12318

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]





12319

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]





12320

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]





12322

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]





12325

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]





12326

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right ) \]





12327

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]





12328

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )\right ) \]





12329

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]





12330

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]





12331

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]





12332

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]





12333

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]





12334

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]





12335

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]





12336

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]