3.20.21 Problems 2001 to 2100

Table 3.769: Second or higher order ODE with constant coefficients




#

ODE

Mathematica

Maple





13222

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]





13223

\[ {}y^{\prime \prime }+4 y = 8 \]





13224

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]





13225

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]





13226

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \]





13227

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]





13228

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \]





13229

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]





13230

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]





13231

\[ {}y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]





13232

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]





13233

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]





13234

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (-1+t \right )-3 \delta \left (t -4\right ) \]





13235

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]





13236

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]





13237

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \]





13238

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]





13239

\[ {}y^{\prime \prime }+16 y = 0 \]





13240

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]





13241

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





13242

\[ {}y^{\prime \prime }+16 y = t \]





13248

\[ {}y^{\prime \prime } = \frac {1+x}{-1+x} \]





13251

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]





13262

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]





13263

\[ {}y^{\prime \prime }-3 = x \]





13264

\[ {}y^{\prime \prime \prime \prime } = 1 \]





13475

\[ {}y^{\prime \prime } = y^{\prime } \]





13476

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]





13485

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]





13487

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]





13488

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]





13491

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]





13495

\[ {}y^{\prime \prime } = y^{\prime } \]





13505

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]





13509

\[ {}y^{\prime \prime } = y^{\prime } \]





13510

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]





13511

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]





13531

\[ {}y^{\prime \prime \prime }+y = 0 \]





13533

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]





13534

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]





13536

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]





13537

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]





13544

\[ {}y^{\prime \prime }+y = 0 \]





13550

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]





13551

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]





13556

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]





13557

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]





13558

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]





13560

\[ {}y^{\prime \prime }+4 y = 0 \]





13561

\[ {}y^{\prime \prime }-4 y = 0 \]





13562

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]





13563

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]





13571

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]





13572

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]





13573

\[ {}y^{\prime \prime }-4 y = 0 \]





13574

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]





13575

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]





13576

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]





13577

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]





13578

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]





13579

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]





13580

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]





13581

\[ {}y^{\prime \prime }-25 y = 0 \]





13582

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]





13583

\[ {}4 y^{\prime \prime }-y = 0 \]





13584

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]





13585

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]





13586

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]





13587

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]





13588

\[ {}y^{\prime \prime }-9 y = 0 \]





13589

\[ {}y^{\prime \prime }-9 y = 0 \]





13590

\[ {}y^{\prime \prime }-9 y = 0 \]





13591

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]





13592

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





13593

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]





13594

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]





13595

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]





13596

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]





13597

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]





13598

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]





13599

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]





13600

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]





13601

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]





13602

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]





13603

\[ {}y^{\prime \prime }+25 y = 0 \]





13604

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]





13605

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]





13606

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]





13607

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]





13608

\[ {}4 y^{\prime \prime }+y = 0 \]





13609

\[ {}y^{\prime \prime }+16 y = 0 \]





13610

\[ {}y^{\prime \prime }+16 y = 0 \]





13611

\[ {}y^{\prime \prime }+16 y = 0 \]





13612

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]





13613

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]





13614

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]





13615

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]





13616

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]





13617

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]





13618

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]