3.20.22 Problems 2101 to 2200

Table 3.771: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

13619

y34y+225y=0

13620

y81y=0

13621

y18y+81y=0

13622

y(5)+18y+81y=0

13623

yy+yy=0

13624

y6y+11y6y=0

13625

y8y+37y50y=0

13626

y9y+31y39y=0

13627

y+y+2y+4y8y=0

13628

y+2y+10y+18y+9y=0

13629

y+4y=0

13630

y6y+12y8y=0

13631

y+26y+25y=0

13632

y+y+9y+9y=0

13633

y8y=0

13634

y+216y=0

13635

y3y4y=0

13636

y+13y+36y=0

13637

y(6)3y+3yy=0

13638

y(6)2y+y=0

13639

16yy=0

13640

4y+15y4y=0

13641

y4y+16y16y=0

13642

y(6)+16y+64y=0

13675

y+4y=24e2x

13676

y+4y=24e2x

13677

y+2y8y=8x23

13678

y+2y8y=8x23

13679

y9y=36

13680

y3y10y=6e4x

13681

y3y10y=7e5x

13682

y+6y+9y=169sin(2x)

13684

y+y=1

13685

y3y10y=e4x

13686

y3y10y=e5x

13687

y3y10y=18e4x+14e5x

13688

y3y10y=35e5x+12e4x

13696

y+9y=52e2x

13697

y6y+9y=27e6x

13698

y+4y5y=30e4x

13699

y+3y=ex2

13700

y3y10y=5e3x

13701

y+9y=10cos(2x)+15sin(2x)

13702

y6y+9y=25sin(6x)

13703

y+3y=26cos(x3)12sin(x3)

13704

y+4y5y=cos(x)

13705

y3y10y=4cos(x)+7sin(x)

13706

y3y10y=200

13707

y+4y5y=x3

13708

y6y+9y=18x2+3x+4

13709

y+9y=9x49

13710

y+9y=x3

13711

y+9y=25xcos(2x)

13712

y6y+9y=e2xsin(x)

13713

y+9y=54x2e3x

13714

y=6exsin(x)x

13715

y2y+y=(6x8)cos(2x)+(8x11)sin(2x)

13716

y2y+y=(12x4)e5x

13717

y+9y=39e2xx

13718

y3y10y=3e2x

13719

y+4y=20

13720

y+4y=x2

13721

y+9y=3sin(3x)

13722

y6y+9y=10e3x

13723

y3y10y=(72x21)e2x

13724

y3y10y=4xe6x

13725

y10y+25y=6e5x

13726

y10y+25y=6e5x

13727

y+4y+5y=24sin(3x)

13728

y+4y+5y=8e3x

13729

y4y+5y=e2xsin(x)

13730

y4y+5y=sin(x)ex

13731

y4y+5y=100

13732

y4y+5y=ex

13733

y4y+5y=10x2+4x+8

13734

y+9y=e2xsin(x)

13735

y+y=6cos(x)3sin(x)

13736

y+y=6cos(2x)3sin(2x)

13737

y4y+5y=x3exsin(x)

13738

y4y+5y=x3e2xsin(x)

13739

y5y+6y=x2e7x+2e7x

13740

y5y+6y=x2

13741

y5y+6y=4e8x

13742

y5y+6y=4e3x

13743

y5y+6y=x2e3x

13744

y5y+6y=x2cos(2x)

13745

y5y+6y=x2e3xsin(2x)

13746

y4y+20y=e4xsin(2x)

13747

y4y+20y=e2xsin(4x)

13748

y4y+20y=x3sin(4x)

13749

y10y+25y=3x2e5x

13750

y10y+25y=3x4

13751

y4y=12e2x

13752

y4y=10sin(2x)

13753

y4y=32e4x

13754

y4y=32x

13755

yy+yy=x2

13756

yy+yy=30cos(2x)

13757

yy+yy=6ex

13758

y(5)+18y+81y=x2e3x