3.20.26 Problems 2501 to 2600

Table 3.779: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

14661

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0 \]

14662

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

14663

\[ {}24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0 \]

14664

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

14665

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

14666

\[ {}8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0 \]

14667

\[ {}2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0 \]

14668

\[ {}y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0 \]

14669

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

14670

\[ {}y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0 \]

14671

\[ {}y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0 \]

14672

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]

14673

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0 \]

14674

\[ {}\frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0 \]

14676

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t} \]

14677

\[ {}y^{\prime \prime \prime \prime }-16 y = 1 \]

14678

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1 \]

14679

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1 \]

14680

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t} \]

14681

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \]

14682

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \]

14683

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t \]

14684

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t} \]

14685

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t} \]

14686

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right ) \]

14687

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

14688

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2} \]

14689

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2} \]

14690

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right ) \]

14691

\[ {}y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right ) \]

14692

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \]

14693

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t} \]

14694

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t} \]

14695

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t} \]

14696

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t} \]

14697

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right ) \]

14698

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right ) \]

14699

\[ {}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24 \]

14700

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2} \]

14701

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \]

14702

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]

14703

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]

14704

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]

14705

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]

14828

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

14829

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14830

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

14833

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

14834

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

14835

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14836

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

14837

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

14838

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

14839

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

14840

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

14841

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

14842

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

14843

\[ {}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

14844

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

14845

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

14846

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

14847

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

14848

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

14849

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

14850

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{{\mathrm e}^{2 t}+1} \]

14851

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

14852

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

14853

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

14854

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

14855

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

14856

\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

14857

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

14858

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

14859

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

14860

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

14861

\[ {}y^{\prime \prime }+16 y = 0 \]

14862

\[ {}y^{\prime \prime }+25 y = 0 \]

14863

\[ {}y^{\prime \prime }-4 y = t \]

14864

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]

14865

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]

14866

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]

14867

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

14868

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]

14869

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

14870

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

14871

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

14872

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

14874

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

14875

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

14893

\[ {}4 x^{\prime \prime }+9 x = 0 \]

14894

\[ {}9 x^{\prime \prime }+4 x = 0 \]

14895

\[ {}x^{\prime \prime }+64 x = 0 \]

14896

\[ {}x^{\prime \prime }+100 x = 0 \]

14897

\[ {}x^{\prime \prime }+x = 0 \]

14898

\[ {}x^{\prime \prime }+4 x = 0 \]

14899

\[ {}x^{\prime \prime }+16 x = 0 \]

14900

\[ {}x^{\prime \prime }+256 x = 0 \]

14901

\[ {}x^{\prime \prime }+9 x = 0 \]

14902

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]

14903

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]