3.20.27 Problems 2601 to 2700

Table 3.781: Second or higher order ODE with constant coefficients




#

ODE

Mathematica

Maple





14904

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]





14905

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]





14906

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]





14907

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]





14908

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]





14909

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]





14910

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]





14911

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]





14912

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]





14913

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]





14914

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]





14915

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]





14916

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]





14917

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]





14930

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]





14931

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]





14932

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]





14933

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]





15176

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]





15181

\[ {}y^{\prime \prime }+y = 0 \]





15182

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]





15185

\[ {}y^{\prime \prime \prime \prime } = x \]





15186

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]





15188

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]





15189

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]





15205

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]





15222

\[ {}y^{\prime \prime }-y = 0 \]





15223

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]





15224

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]





15225

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





15226

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]





15227

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]





15228

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]





15229

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]





15230

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]





15231

\[ {}y^{\prime \prime \prime }-8 y = 0 \]





15232

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]





15233

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]





15234

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]





15235

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]





15236

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]





15237

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]





15238

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]





15239

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]





15240

\[ {}y^{\left (5\right )} = 0 \]





15241

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]





15242

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]





15243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]





15244

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]





15245

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (-1+x \right )^{2} \]





15246

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]





15247

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]





15248

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]





15249

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]





15250

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]





15251

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]





15252

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]





15253

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]





15254

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]





15255

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]





15256

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]





15257

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]





15258

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]





15259

\[ {}y^{\prime \prime }+k^{2} y = k \]





15260

\[ {}y^{\prime \prime \prime }+y = x \]





15261

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]





15262

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]





15263

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]





15264

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]





15265

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]





15266

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]





15267

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]





15268

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]





15269

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]





15270

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]





15271

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]





15272

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]





15273

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]





15274

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]





15275

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]





15276

\[ {}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]





15277

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]





15278

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]





15279

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \]





15280

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]





15281

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]





15282

\[ {}y^{\prime \prime }+9 y = 9 \]





15283

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]





15284

\[ {}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]





15285

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]





15286

\[ {}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]





15287

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]





15288

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]





15289

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]





15290

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]





15291

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]





15292

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]





15293

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]





15294

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]





15295

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]