3.21.2 Problems 101 to 200

Table 3.789: Higher order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

2124

\[ {}4 y^{\left (5\right )}-3 y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

2125

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+16 y^{\prime }-12 y = 0 \]

2126

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

2127

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

2128

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

2130

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }-20 y = 0 \]

2131

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

2132

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-8 y^{\prime }+8 y = 0 \]

2133

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-6 y^{\prime }+2 y = 0 \]

2134

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }-4 y = 0 \]

2135

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+10 y^{\prime }-15 y = 0 \]

2136

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+11 y^{\prime }-40 y = 0 \]

2137

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-12 y^{\prime }+16 y = 0 \]

2138

\[ {}4 y^{\prime \prime \prime }+12 y^{\prime \prime }-3 y^{\prime }+14 y = 0 \]

2139

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }-6 y^{\prime \prime }+8 y^{\prime }-8 y = 0 \]

2729

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

2730

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

2731

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-18 y^{\prime }-40 y = 0 \]

2732

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0 \]

2733

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 0 \]

2734

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime } = 0 \]

2735

\[ {}y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0 \]

2824

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

2825

\[ {}y^{\prime \prime \prime }+11 y^{\prime \prime }+36 y^{\prime }+26 y = 0 \]

3242

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \]

3244

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

3245

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

3246

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

3247

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

3248

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

3249

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \]

3250

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

3251

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

3252

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \]

3253

\[ {}y^{\left (6\right )}-64 y = 0 \]

4577

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

4578

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

4579

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

4580

\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

4583

\[ {}y^{\prime \prime \prime \prime } = 0 \]

4585

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

4586

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

4588

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

4589

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

4590

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

4591

\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

4592

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

4595

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

4597

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

4598

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

4599

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

4600

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \]

4605

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

4803

\[ {}y^{\prime \prime \prime }+y = 0 \]

4804

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

4805

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

4806

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

4866

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0 \]

4885

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0 \]

5046

\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

5048

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]

5049

\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

5212

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

5349

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

5359

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0 \]

5361

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0 \]

5364

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

5365

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

5366

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

5367

\[ {}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

5886

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

5972

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

5973

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

5974

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

5975

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

5976

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

5977

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

5978

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

5979

\[ {}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

5980

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

5981

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]

5984

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

5985

\[ {}y^{\left (5\right )}+2 y = 0 \]

5986

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

5987

\[ {}y^{\prime \prime \prime }+y = 0 \]

5988

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

5990

\[ {}y^{\prime \prime \prime \prime }-k^{4} y = 0 \]

6138

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

6348

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

6349

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

6350

\[ {}y^{\prime \prime \prime }-y = 0 \]

6351

\[ {}y^{\prime \prime \prime }+y = 0 \]

6352

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

6353

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

6354

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

6355

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

6356

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

6357

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

6358

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]