3.21.3 Problems 201 to 300

Table 3.791: Higher order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

6359

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

6360

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

6361

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

6362

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

6363

\[ {}y^{\prime \prime \prime \prime } = 0 \]

9776

\[ {}y^{\prime \prime \prime }-\lambda y = 0 \]

9779

\[ {}y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0 \]

9791

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

9794

\[ {}y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0 \]

9859

\[ {}y^{\prime \prime \prime \prime } = 0 \]

9861

\[ {}y^{\prime \prime \prime \prime }+\lambda y = 0 \]

9864

\[ {}y^{\prime \prime \prime \prime }+\left (\lambda +1\right ) a^{2} y^{\prime \prime }+\lambda \,a^{4} y = 0 \]

9899

\[ {}f \left (y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y\right )+2 \operatorname {df} \left (y^{\prime \prime \prime }-a^{2} y^{\prime }\right ) = 0 \]

9900

\[ {}f y^{\prime \prime \prime \prime } = 0 \]

9908

\[ {}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0 \]

10169

\[ {}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

11245

\[ {}y^{\prime \prime \prime }-y^{\prime } = 0 \]

11246

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

11247

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

11248

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

11249

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0 \]

11250

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

11251

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

11252

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0 \]

11501

\[ {}x^{\prime \prime \prime }+x^{\prime } = 0 \]

11503

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

11504

\[ {}x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

11506

\[ {}x^{\prime \prime \prime }-8 x = 0 \]

11507

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]

11579

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

11580

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

11721

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

11735

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

11736

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

11743

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0 \]

11744

\[ {}4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0 \]

11745

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

11746

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

11747

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

11748

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

11749

\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

11750

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

11751

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

11752

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

11753

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

11754

\[ {}y^{\left (5\right )} = 0 \]

11769

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

11770

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

11771

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

11772

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]

11773

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

11774

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

12166

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

12245

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

12247

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

12294

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

12302

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

12303

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

12304

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

12305

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

12306

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

12307

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

12308

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

12489

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

12510

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

12511

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

12512

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0 \]

12513

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

12514

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

12515

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

12516

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

12517

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

12589

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

12755

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

12761

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

12762

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

12763

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

12764

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

12765

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

12766

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12767

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

12768

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

12769

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

12771

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

12772

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

12781

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

12782

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]

12806

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

13488

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

13491

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

13511

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

13531

\[ {}y^{\prime \prime \prime }+y = 0 \]

13556

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

13558

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

13571

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

13572

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

13577

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

13578

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

13617

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

13618

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]