3.24.8 Problems 701 to 800

Table 3.821: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

7217

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

7220

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

7285

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

7286

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

7287

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

7288

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

7289

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

7293

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

7294

\[ {}y^{\prime \prime } = A y^{\frac {2}{3}} \]

7295

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

7296

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

7297

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7298

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

7299

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 6 x^{3} {\mathrm e}^{x} \]

7313

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

7315

\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

7402

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

7403

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

7405

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

7406

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

7408

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = x \]

7409

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = x \]

7411

\[ {}{y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \]

7412

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0 \]

7434

\[ {}y {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

7435

\[ {}y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0 \]

7436

\[ {}y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

7437

\[ {}y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0 \]

7438

\[ {}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \]

7439

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

7440

\[ {}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \]

7441

\[ {}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \]

7442

\[ {}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

7443

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y {y^{\prime }}^{2} = 0 \]

7444

\[ {}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0 \]

7445

\[ {}y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0 \]

7446

\[ {}y^{\prime } y^{\prime \prime }+y^{2} = 0 \]

7447

\[ {}y^{\prime } y^{\prime \prime }+y^{n} = 0 \]

7449

\[ {}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0 \]

7450

\[ {}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

7451

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+{y^{\prime }}^{2} = 0 \]

7452

\[ {}3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

7453

\[ {}10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0 \]

7454

\[ {}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0 \]

7455

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

7456

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

7457

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

7458

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-c^{2} y = 0 \]

7459

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

7460

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2} \]

7461

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \]

7462

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

7463

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

7464

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

7465

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

7466

\[ {}y^{\prime \prime } \cos \left (x \right )+y^{\prime } \sin \left (x \right )-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

7467

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

7468

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x^{m +1} \]

7469

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

7470

\[ {}\cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

7471

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

7472

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

7473

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

7474

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

7475

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0 \]

7476

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

7477

\[ {}x^{2} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0 \]

7478

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

7479

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

7486

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

7487

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

7488

\[ {}y^{\prime \prime \prime }-x y = 0 \]

7491

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7492

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

7493

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

7494

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0 \]

7495

\[ {}3 y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

7496

\[ {}5 y^{\prime \prime }-2 x y^{\prime }+10 y = 0 \]

7497

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

7498

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

7499

\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

7500

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

7501

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

7502

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y = 0 \]

7503

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

7504

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = 0 \]

7505

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

7506

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7507

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = 0 \]

7508

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

7509

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7510

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

7511

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

7512

\[ {}2 y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

7513

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7514

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

7515

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7516

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7517

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

7518

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]