3.24.9 Problems 801 to 900

Table 3.823: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

7519

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7520

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

7521

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

7522

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

7523

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

7524

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 0 \]

7525

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7526

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

7527

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}+3\right ) y = 0 \]

7528

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-\left (x^{2}-2\right ) y = 0 \]

7529

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

7530

\[ {}x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 0 \]

7531

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

7532

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7533

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

7534

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

7535

\[ {}\left (2+x \right ) y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

7536

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2-x \right ) y = 0 \]

7537

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0 \]

7538

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0 \]

7539

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0 \]

7540

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }+6 y = 0 \]

7541

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

7542

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }+20 y = 0 \]

7543

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }-12 y = 0 \]

7544

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0 \]

7545

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }-4 y = 0 \]

7546

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-10 x y^{\prime }+28 y = 0 \]

7547

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7548

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-9 x y^{\prime }-6 y = 0 \]

7549

\[ {}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (-2+x \right ) y^{\prime }+36 y = 0 \]

7550

\[ {}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0 \]

7551

\[ {}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0 \]

7552

\[ {}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (1+x \right ) y^{\prime }+60 y = 0 \]

7553

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 x y = 0 \]

7554

\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \]

7555

\[ {}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0 \]

7556

\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \]

7557

\[ {}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0 \]

7558

\[ {}\left (3 x +1\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7559

\[ {}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0 \]

7560

\[ {}\left (2+x \right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y = 0 \]

7561

\[ {}\left (x +4\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y = 0 \]

7562

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (1+x \right ) y^{\prime }+8 y = 0 \]

7563

\[ {}x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y = 0 \]

7564

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y = 0 \]

7565

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]

7566

\[ {}y^{\prime \prime }+3 x y^{\prime }+\left (2 x^{2}+4\right ) y = 0 \]

7567

\[ {}\left (4 x +2\right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y = 0 \]

7568

\[ {}y^{\prime \prime }-3 x y^{\prime }+\left (2 x^{2}+5\right ) y = 0 \]

7569

\[ {}2 y^{\prime \prime }+5 x y^{\prime }+\left (2 x^{2}+4\right ) y = 0 \]

7570

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

7571

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

7572

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

7573

\[ {}3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

7574

\[ {}12 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

7575

\[ {}x^{2} \left (10 x^{2}+x +5\right ) y^{\prime \prime }+x \left (48 x^{2}+3 x +4\right ) y^{\prime }+\left (36 x^{2}+x \right ) y = 0 \]

7576

\[ {}18 x^{2} \left (1+x \right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

7577

\[ {}2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

7578

\[ {}2 x^{2} y^{\prime \prime }+x \left (5+x \right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

7579

\[ {}3 x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

7580

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-2 x +1\right ) y = 0 \]

7581

\[ {}3 x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

7582

\[ {}2 x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

7583

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

7584

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (1+x \right ) y = 0 \]

7585

\[ {}6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (2+x \right ) y = 0 \]

7586

\[ {}x^{2} \left (4 x +3\right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (4 x +3\right ) y = 0 \]

7587

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

7588

\[ {}x^{2} \left (2+x \right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y = 0 \]

7589

\[ {}8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

7590

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y = 0 \]

7591

\[ {}x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 x y = 0 \]

7592

\[ {}4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y = 0 \]

7593

\[ {}3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y = 0 \]

7594

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y = 0 \]

7595

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

7596

\[ {}2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y = 0 \]

7597

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 x y = 0 \]

7598

\[ {}2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y = 0 \]

7599

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

7600

\[ {}6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y = 0 \]

7601

\[ {}9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

7602

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

7603

\[ {}8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y = 0 \]

7604

\[ {}2 x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

7605

\[ {}6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y = 0 \]

7606

\[ {}28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y = 0 \]

7607

\[ {}8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y = 0 \]

7608

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y = 0 \]

7609

\[ {}3 x^{2} \left (1+x \right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

7610

\[ {}4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y = 0 \]

7611

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

7612

\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

7613

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

7614

\[ {}x^{2} y^{\prime \prime }-x \left (5-x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

7615

\[ {}4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (1+x \right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y = 0 \]

7616

\[ {}x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y = 0 \]

7617

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y = 0 \]

7618

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+14 x +5\right ) y^{\prime }+\left (12 x^{2}+18 x +4\right ) y = 0 \]