3.25.1 Problems 1 to 100

Table 3.875: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

157

\[ {}y^{\prime \prime }-y = 0 \]

158

\[ {}y^{\prime \prime }-9 y = 0 \]

159

\[ {}y^{\prime \prime }+4 y = 0 \]

160

\[ {}y^{\prime \prime }+25 y = 0 \]

161

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

162

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

163

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

164

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]

165

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

166

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

167

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

168

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

173

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

174

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

175

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

176

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

177

\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \]

178

\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

179

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

180

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

181

\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

182

\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

195

\[ {}y^{\prime \prime }-4 y = 0 \]

196

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

197

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 0 \]

198

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

199

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

200

\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]

201

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

202

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

203

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

204

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

205

\[ {}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \]

206

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

207

\[ {}y^{\prime \prime }-2 i y^{\prime }+3 y = 0 \]

208

\[ {}y^{\prime \prime }-i y^{\prime }+6 y = 0 \]

209

\[ {}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y \]

212

\[ {}\frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x = 0 \]

213

\[ {}3 x^{\prime \prime }+30 x^{\prime }+63 x = 0 \]

214

\[ {}x^{\prime \prime }+8 x^{\prime }+16 x = 0 \]

215

\[ {}2 x^{\prime \prime }+12 x^{\prime }+50 x = 0 \]

216

\[ {}4 x^{\prime \prime }+20 x^{\prime }+169 x = 0 \]

217

\[ {}2 x^{\prime \prime }+16 x^{\prime }+40 x = 0 \]

218

\[ {}x^{\prime \prime }+10 x^{\prime }+125 x = 0 \]

279

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

599

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

600

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

601

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

602

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

603

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

604

\[ {}4 y^{\prime \prime }-9 y = 0 \]

605

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

606

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

607

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

608

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

609

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]

610

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

611

\[ {}y^{\prime \prime }+5 y^{\prime }+3 y = 0 \]

612

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]

613

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

614

\[ {}4 y^{\prime \prime }-y = 0 \]

615

\[ {}y^{\prime \prime }-y = 0 \]

616

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

617

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

618

\[ {}4 y^{\prime \prime }-y = 0 \]

619

\[ {}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0 \]

620

\[ {}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0 \]

621

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

622

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

623

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

624

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

625

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

626

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

627

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

628

\[ {}4 y^{\prime \prime }+9 y = 0 \]

629

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

630

\[ {}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0 \]

631

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

632

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

633

\[ {}y^{\prime \prime }+4 y = 0 \]

634

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

635

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

636

\[ {}y^{\prime \prime }+y = 0 \]

637

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

638

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

639

\[ {}u^{\prime \prime }-u^{\prime }+2 u = 0 \]

640

\[ {}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0 \]

641

\[ {}y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]

642

\[ {}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0 \]

653

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

654

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

655

\[ {}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

656

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

657

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

658

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

659

\[ {}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0 \]

660

\[ {}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0 \]

661

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

662

\[ {}2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

663

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]