3.25.4 Problems 301 to 400

Table 3.881: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

6660

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]

6667

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

6670

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6674

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

6675

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

6678

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6679

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]

6709

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

6832

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

7084

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

7085

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

7098

\[ {}y^{\prime \prime } = 0 \]

7105

\[ {}y y^{\prime \prime } = 0 \]

7109

\[ {}y^{2} y^{\prime \prime } = 0 \]

7114

\[ {}a y y^{\prime \prime }+b y = 0 \]

7132

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7133

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7134

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7191

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

7390

\[ {}y^{\prime \prime } = 0 \]

7391

\[ {}{y^{\prime \prime }}^{2} = 0 \]

7392

\[ {}{y^{\prime \prime }}^{n} = 0 \]

7393

\[ {}a y^{\prime \prime } = 0 \]

7394

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

7395

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

7400

\[ {}{y^{\prime \prime }}^{3} = 0 \]

7401

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

7410

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

7884

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

7997

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

8282

\[ {}u^{\prime \prime }+2 u^{\prime }+u = 0 \]

8314

\[ {}y^{\prime \prime } = 0 \]

9335

\[ {}y^{\prime \prime } = 0 \]

9336

\[ {}y^{\prime \prime }+y = 0 \]

9340

\[ {}y^{\prime \prime }-y = 0 \]

9343

\[ {}y^{\prime \prime }+l y = 0 \]

9368

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

10825

\[ {}y^{\prime \prime }+a y = 0 \]

10835

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

11243

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

11244

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

11352

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

11357

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

11436

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

11437

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

11438

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

11439

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

11440

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

11441

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

11442

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

11443

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

11444

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]

11445

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]

11446

\[ {}x^{\prime \prime }+9 x = 0 \]

11447

\[ {}x^{\prime \prime }-12 x = 0 \]

11448

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]

11449

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]

11450

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

11451

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]

11498

\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

11510

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]

11511

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

11513

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]

11571

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

11578

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

11585

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

11588

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

11589

\[ {}y^{\prime \prime }+y = 0 \]

11590

\[ {}y^{\prime \prime }+y = 0 \]

11591

\[ {}y^{\prime \prime }+y = 0 \]

11716

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

11717

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

11720

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

11731

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

11732

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

11733

\[ {}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

11734

\[ {}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

11737

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

11738

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

11739

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

11740

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

11741

\[ {}y^{\prime \prime }+9 y = 0 \]

11742

\[ {}4 y^{\prime \prime }+y = 0 \]

11755

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

11756

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

11757

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]

11758

\[ {}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

11759

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

11760

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

11761

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

11762

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

11763

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

11764

\[ {}y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]

11765

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

11766

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

11767

\[ {}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]

11768

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]

12014

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

12015

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

12016

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]