3.26.3 Problems 201 to 300

Table 3.893: Second order, Linear, Homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

6018

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

6029

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \]

6030

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \]

6031

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6032

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

6033

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6037

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = 0 \]

6038

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

6293

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

6294

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

6295

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

6296

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

6297

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6298

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6299

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

6300

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

6301

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

6339

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

6340

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6341

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6342

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

6343

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-1+x}+\frac {y}{-1+x} = 0 \]

6344

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

6345

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \]

6346

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

6347

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

6399

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6619

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

6620

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

6621

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

6622

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

6623

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

6624

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

6625

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

6626

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

6627

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

6628

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

6629

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

6630

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

6631

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

6632

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

6633

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

6634

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

6635

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

6636

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

6637

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

6638

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

6640

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

6641

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

6642

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]

6834

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

6938

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

6939

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

6940

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

6941

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

6942

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

6943

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

6944

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6945

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

6946

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y = 0 \]

6958

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

6989

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

7092

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]

7093

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

7094

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

7095

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

7096

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

7097

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

7286

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

7288

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

7289

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

7293

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

7295

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

7296

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

7297

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7313

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

7457

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

7458

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-c^{2} y = 0 \]

7461

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \]

7463

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

7469

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

7470

\[ {}\cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

7475

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0 \]

7476

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

7478

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

7479

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

7486

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

7487

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

7491

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7492

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

7493

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

7494

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0 \]

7495

\[ {}3 y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

7496

\[ {}5 y^{\prime \prime }-2 x y^{\prime }+10 y = 0 \]

7497

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

7498

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

7499

\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

7500

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

7501

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

7502

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y = 0 \]