3.27.5 Problems 401 to 500

Table 3.939: Second order, Linear, non-homogeneous and constant coefficients




#

ODE

Mathematica

Maple





5150

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2} \]





5151

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x} \]





5152

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1 \]





5153

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right ) \]





5154

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t} \]





5155

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right ) \]





5156

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right ) \]





5157

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right ) \]





5158

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x \]





5159

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right ) \]





5160

\[ {}y^{\prime \prime } = 3 \sin \left (x \right )-4 y \]





5162

\[ {}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right ) \]





5163

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \]





5164

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]





5165

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right ) \]





5166

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \]





5167

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t} \]





5168

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18 \]





5170

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]





5171

\[ {}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x} \]





5175

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1 \]





5176

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x} \]





5177

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right ) \]





5178

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x} \]





5179

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \]





5186

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]





5187

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]





5188

\[ {}x^{\prime \prime }+4 x = \sin \left (2 t \right )^{2} \]





5192

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}} \]





5193

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]





5194

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]





5195

\[ {}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x} \]





5196

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]





5204

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]





5205

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]





5206

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (2 x \right ) \]





5207

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]





5209

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-2 x} \]





5210

\[ {}y^{\prime \prime }+5 y^{\prime }-3 y = \operatorname {Heaviside}\left (x -4\right ) \]





5215

\[ {}q^{\prime \prime }+9 q^{\prime }+14 q = \frac {\sin \left (t \right )}{2} \]





5233

\[ {}y^{\prime \prime }-y = 4-x \]





5235

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \left (1-x \right ) {\mathrm e}^{x} \]





5350

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x} \]





5351

\[ {}y^{\prime \prime }+9 y = x \cos \left (x \right ) \]





5368

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]





5369

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]





5373

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]





5374

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]





5375

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]





5376

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]





5377

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]





5378

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]





5379

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]





5380

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]





5381

\[ {}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2} \]





5382

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}} \]





5383

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \]





5384

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]





5385

\[ {}y^{\prime \prime }+2 y = 2+{\mathrm e}^{x} \]





5386

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right ) \]





5387

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right ) \]





5388

\[ {}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \]





5390

\[ {}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 x \cos \left (x \right ) \]





5392

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \]





5393

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]





5394

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} x \]





5397

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]





5398

\[ {}y^{\prime \prime }+5 y = \cos \left (x \sqrt {5}\right ) \]





5400

\[ {}y^{\prime \prime }-y = x^{2} \]





5401

\[ {}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \]





5402

\[ {}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]





5403

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}} \]





5404

\[ {}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x} \]





5405

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \]





5682

\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]





5684

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]





5685

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]





5687

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]





5688

\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]





5689

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]





5692

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]





5693

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]





5695

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]





5696

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]





5697

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0





5698

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0





5699

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0





5700

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0





5701

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0





5702

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0





5703

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0





5704

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]





5705

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]





5706

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]





5707

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (-1+t \right ) \]





5708

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]





5709

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (-1+t \right ) \]





5710

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]





5711

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]





5712

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (-1+t \right )+\delta \left (t -2\right ) \]