3.27.5 Problems 401 to 500

Table 3.939: Second order, Linear, non-homogeneous and constant coefficients




#

ODE

Mathematica

Maple





5150

y+4y+4y=2cos(x)2





5151

y4y+3y=x+e2x





5152

y2y+3y=x21





5153

y9y=e3x+sin(x)





5154

x+4x+3x=e3t





5155

y+4y+5y=6sin(t)





5156

x3x+2x=sin(t)





5157

y+3y+2y=3sin(x)





5158

y+6y+10y=50x





5159

x+2x+2x=85sin(3t)





5160

y=3sin(x)4y





5162

x+5x+6x=cos(t)





5163

yy2y=4x2





5164

yy2y=e3x





5165

yy2y=sin(2x)





5166

y6y+25y=2sin(t2)cos(t2)





5167

y6y+25y=64et





5168

y6y+25y=50t336t263t+18





5170

y=9x2+2x1





5171

y5y=2e5x





5175

y2y+y=x21





5176

y2y+y=4e2x





5177

y2y+y=4cos(x)





5178

y2y+y=3ex





5179

y2y+y=xex





5186

y2y+y=exx





5187

yy2y=e3x





5188

x+4x=sin(2t)2





5192

y2y+y=exx5





5193

y+y=sec(x)





5194

yy2y=e3x





5195

y60y900y=5e10x





5196

y7y=3





5204

yy=sin(x)





5205

yy=ex





5206

y+2y3y=sin(2x)





5207

y+y=sin(x)





5209

y+2y+5y=3e2x





5210

y+5y3y=Heaviside(x4)





5215

q+9q+14q=sin(t)2





5233

yy=4x





5235

y3y+2y=2(1x)ex





5350

y3y+2y=e5x





5351

y+9y=xcos(x)





5368

y4y+3y=1





5369

y4y=5





5373

y6y+9y=e2x





5374

y+y2y=2x2+2x+2





5375

yy=4xex





5376

yy=sin(x)2





5377

yy=1(1+ex)2





5378

y+y=csc(x)





5379

y3y+2y=sin(ex)





5380

y+y=csc(x)





5381

y+4y=4sec(x)2





5382

y4y+3y=11+ex





5383

yy=exsin(ex)+cos(ex)





5384

yy=1(1+ex)2





5385

y+2y=2+ex





5386

yy=exsin(2x)





5387

y+2y+2y=x2+sin(x)





5388

y9y=x+e2xsin(2x)





5390

y+y=2sin(x)+4xcos(x)





5392

y+y+y=e3x+6ex3e2x+5





5393

yy=ex





5394

y4y+4y=ex+e2xx





5397

y+4y=sin(2x)





5398

y+5y=cos(x5)





5400

yy=x2





5401

y+2y=x3+x2+e2x+cos(3x)





5402

y2yy=excos(x)





5403

y4y+4y=e2xx2





5404

yy=xe3x





5405

y+5y+6y=e2xsec(x)2(1+2tan(x))





5682

y+9y=10et





5684

y6y+5y=29cos(2t)





5685

y+7y+12y=21e3t





5687

y4y+3y=6t8





5688

y+y25=t250





5689

y+3y+9y4=9t3+64





5692

y+2y+5y=50t100





5693

y+3y4y=6e2t3





5695

y+6y+8y=e3te5t





5696

y+10y+24y=144t2





5697

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0





5698

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0





5699

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0





5700

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0





5701

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0





5702

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0





5703

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0





5704

y+4y=δ(tπ)





5705

y+16y=4δ(t3π)





5706

y+y=δ(tπ)δ(t2π)





5707

y+4y+5y=δ(1+t)





5708

4y+24y+37y=17et+δ(t12)





5709

y+3y+2y=10sin(t)+10δ(1+t)





5710

y+4y+5y=(1Heaviside(t10))ete10δ(t10)





5711

y+5y+6y=δ(tπ2)+Heaviside(tπ)cos(t)





5712

y+5y+6y=Heaviside(1+t)+δ(t2)