# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\sqrt {{| y|}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a \sqrt {y}-b x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {\sqrt {y^{2}-1}}{\sqrt {x^{2}-1}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {y^{2}-1}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y-x^{2} \sqrt {x^{2}-y^{2}}}{x y \sqrt {x^{2}-y^{2}}+x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {1+y^{2}}{{| y+\sqrt {y+1}|} \left (1+x \right )^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\sqrt {\frac {a y^{2}+b y+c}{x^{2} a +b x +c}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\sqrt {\frac {y^{3}+1}{x^{3}+1}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {\sqrt {{| y \left (y-1\right ) \left (-1+a y\right )|}}}{\sqrt {{| x \left (-1+x \right ) \left (a x -1\right )|}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\sqrt {\frac {a y^{4}+b y^{2}+1}{a \,x^{4}+b \,x^{2}+1}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\sqrt {\frac {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\sqrt {\frac {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}{a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\operatorname {R1} \left (x , \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}\right ) \operatorname {R2} \left (y, \sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\left (\frac {a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}}\right )^{\frac {2}{3}} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\cos \left (b x +a y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+f \left (x \right ) \cos \left (a y\right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+f \left (x \right ) \sin \left (y\right )+\left (1-f^{\prime }\left (x \right )\right ) \cos \left (y\right )-f^{\prime }\left (x \right )-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 \tan \left (y\right ) \tan \left (x \right )-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-a \left (1+\tan \left (y\right )^{2}\right )+\tan \left (y\right ) \tan \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\tan \left (x y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-f \left (a x +b y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x^{a -1} y^{-b +1} f \left (\frac {x^{a}}{a}+\frac {y^{b}}{b}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y-x f \left (x^{2}+a y^{2}\right )}{x +a y f \left (x^{2}+a y^{2}\right )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y a f \left (x^{c} y\right )+c \,x^{a} y^{b}}{x b f \left (x^{c} y\right )-x^{a} y^{b}} = 0 \] |
✗ |
✗ |
|
\[ {}2 y^{\prime }-3 y^{2}-4 a y-b -c \,{\mathrm e}^{-2 a x} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-\sqrt {a^{2}-x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y-x \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y-\frac {x}{\ln \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y-x^{2} \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a y+b \,x^{n} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y^{2}+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a y^{2}-y+b \,x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a y^{2}-b y+c \,x^{2 b} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a y^{2}-b y-c \,x^{\beta } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x y^{2}+a = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x y^{2}-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x y^{2}-y-a \,x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a x y^{2}+2 y+b x = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a x y^{2}+b y+c x +d = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x^{a} y^{2}+\frac {\left (a -b \right ) y}{2}+x^{b} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a \,x^{\alpha } y^{2}+b y-c \,x^{\beta } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+f \left (x \right ) \left (-x^{2}+y^{2}\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x y^{\prime }+y^{3}+3 x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-\sqrt {x^{2}+y^{2}}-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a \sqrt {x^{2}+y^{2}}-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-x \sqrt {x^{2}+y^{2}}-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-x \left (y-x \right ) \sqrt {x^{2}+y^{2}}-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-x \,{\mathrm e}^{\frac {y}{x}}-y-x = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y \ln \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y \left (\ln \left (x y\right )-1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y \left (x \ln \left (\frac {x^{2}}{y}\right )+2\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-\sin \left (x -y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x y^{\prime }+\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-x \sin \left (\frac {y}{x}\right )-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x \cos \left (\frac {y}{x}\right )-y+x = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+x \tan \left (\frac {y}{x}\right )-y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y f \left (x y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y f \left (x^{a} y^{b}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+a y-f \left (x \right ) g \left (x^{a} y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime }+y \left (y-x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }-y-2 x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \] |
✓ |
✓ |
|
\[ {}3 x y^{\prime }-3 x \ln \left (x \right ) y^{4}-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y-x = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-\left (-1+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y^{2}+x y+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-y^{2}-x y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-y^{2}-x y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+a \,x^{k}-b \left (b -1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+4 x y+2 = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }-y^{2}\right )-a \,x^{2} y+a x +2 = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )+b \,x^{\alpha }+c = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+a y^{3}-a \,x^{2} y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+x y^{3}+a y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+a \,x^{2} y^{3}+b y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x \left (x^{2}+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y-2 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+\left (1+y^{2}\right ) \left (2 x y-1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )-x \left (x^{2}+1\right ) \cos \left (y\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }-x y+a = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+y^{2}-2 x y+1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }-y \left (y-x \right ) = 0 \] |
✓ |
✓ |
|