6.113 Problems 11201 to 11300

Table 6.225: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

11201

\[ {} y^{\prime \prime }-2 x y^{\prime }+x^{2} y = 0 \]

11202

\[ {} x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (y+\left (1-x \right ) y^{\prime }\right ) = 0 \]

11203

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }-\left (2 x +1\right ) \left (x y^{\prime }-y\right ) = 0 \]

11204

\[ {} \left (3-x \right ) y-\left (4-x \right ) x y^{\prime }+2 \left (2-x \right ) x^{2} y^{\prime \prime } = 0 \]

11205

\[ {} \left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

11206

\[ {} 4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

11207

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]

11208

\[ {} x \left (x +2\right ) y^{\prime \prime }+2 y^{\prime } \left (1+x \right )-2 y = 0 \]

11209

\[ {} x \left (x +2\right ) y^{\prime \prime }+y^{\prime } \left (1+x \right )-4 y = 0 \]

11210

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

11211

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

11212

\[ {} \left (x^{2}-2 x +10\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

11213

\[ {} \left (x^{2}-2 x +10\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

11214

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = 0 \]

11215

\[ {} \left (x +2\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

11216

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

11217

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

11218

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

11219

\[ {} x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

11220

\[ {} 2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

11221

\[ {} 2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

11222

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]

11223

\[ {} -x y+2 y^{\prime }+x y^{\prime \prime } = 0 \]

11224

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

11225

\[ {} x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

11226

\[ {} x^{4} y^{\prime \prime }+\lambda y = 0 \]

11227

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

11228

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

11229

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

11230

\[ {} x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

11231

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

11232

\[ {} 16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

11233

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = 0 \]

11234

\[ {} x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

11235

\[ {} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

11236

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

11237

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

11238

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+30 y = 0 \]

11239

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

11240

\[ {} x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

11241

\[ {} 2 x \left (x -1\right ) y^{\prime \prime }-y^{\prime } \left (1+x \right )+y = 0 \]

11242

\[ {} x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

11243

\[ {} x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

11244

\[ {} x^{2} y^{\prime \prime }+6 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]

11245

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

11246

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

11247

\[ {} 4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

11248

\[ {} 2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

11249

\[ {} 3 t \left (t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

11250

\[ {} x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

11251

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {y \left (x^{2}-1\right )}{4} = 0 \]

11252

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

11253

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

11254

\[ {} x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

11255

\[ {} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

11256

\[ {} 2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = 0 \]

11257

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

11258

\[ {} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

11259

\[ {} u^{\prime \prime }+2 u^{\prime }+u = 0 \]

11260

\[ {} u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

11261

\[ {} y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

11262

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

11263

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

11264

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11265

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11266

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11267

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11268

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11269

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11270

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11271

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11272

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11273

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11274

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

11275

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

11276

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = 0 \]

11277

\[ {} x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

11278

\[ {} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

11279

\[ {} x y^{\prime \prime }+y^{\prime } \left (1+x \right )+2 y = 0 \]

11280

\[ {} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

11281

\[ {} 2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

11282

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

11283

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

11284

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

11285

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

11286

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \]

11287

\[ {} y^{\prime \prime } = \left (x^{2}+3\right ) y \]

11288

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

11289

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

11290

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

11291

\[ {} y^{\prime \prime } = 0 \]

11292

\[ {} y^{\prime \prime } = \frac {2 y}{x^{2}} \]

11293

\[ {} y^{\prime \prime } = \frac {6 y}{x^{2}} \]

11294

\[ {} y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 \left (x -1\right ) x}\right ) y \]

11295

\[ {} y^{\prime \prime } = \frac {20 y}{x^{2}} \]

11296

\[ {} y^{\prime \prime } = \frac {12 y}{x^{2}} \]

11297

\[ {} y^{\prime \prime }-\frac {y}{4 x^{2}} = 0 \]

11298

\[ {} x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

11299

\[ {} y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

11300

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = 0 \]