6.115 Problems 11401 to 11500

Table 6.229: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

11401

\[ {} x y^{\prime }-\sqrt {a^{2}-x^{2}} = 0 \]

11402

\[ {} x y^{\prime }+y-x \sin \left (x \right ) = 0 \]

11403

\[ {} x y^{\prime }-y-\frac {x}{\ln \left (x \right )} = 0 \]

11404

\[ {} x y^{\prime }-y-x^{2} \sin \left (x \right ) = 0 \]

11405

\[ {} x y^{\prime }-y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \]

11406

\[ {} x y^{\prime }+a y+b \,x^{n} = 0 \]

11407

\[ {} x y^{\prime }+x^{2}+y^{2} = 0 \]

11408

\[ {} x y^{\prime }-y^{2}+1 = 0 \]

11409

\[ {} x y^{\prime }+a y^{2}-y+b \,x^{2} = 0 \]

11410

\[ {} x y^{\prime }+a y^{2}-b y+c \,x^{2 b} = 0 \]

11411

\[ {} x y^{\prime }+a y^{2}-b y-c \,x^{\beta } = 0 \]

11412

\[ {} x y^{\prime }+a +x y^{2} = 0 \]

11413

\[ {} x y^{\prime }+x y^{2}-y = 0 \]

11414

\[ {} x y^{\prime }+x y^{2}-y-a \,x^{3} = 0 \]

11415

\[ {} x y^{\prime }+x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0 \]

11416

\[ {} x y^{\prime }+a x y^{2}+2 y+b x = 0 \]

11417

\[ {} x y^{\prime }+a x y^{2}+b y+c x +d = 0 \]

11418

\[ {} x y^{\prime }+x^{a} y^{2}+\frac {\left (a -b \right ) y}{2}+x^{b} = 0 \]

11419

\[ {} x y^{\prime }+a \,x^{\alpha } y^{2}+b y-c \,x^{\beta } = 0 \]

11420

\[ {} x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

11421

\[ {} x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

11422

\[ {} x y^{\prime }+f \left (x \right ) \left (-x^{2}+y^{2}\right )-y = 0 \]

11423

\[ {} x y^{\prime }+y^{3}+3 x y^{2} = 0 \]

11424

\[ {} x y^{\prime }-y-\sqrt {x^{2}+y^{2}} = 0 \]

11425

\[ {} x y^{\prime }+a \sqrt {x^{2}+y^{2}}-y = 0 \]

11426

\[ {} x y^{\prime }-x \sqrt {x^{2}+y^{2}}-y = 0 \]

11427

\[ {} x y^{\prime }-x \left (y-x \right ) \sqrt {x^{2}+y^{2}}-y = 0 \]

11428

\[ {} x y^{\prime }-{\mathrm e}^{\frac {y}{x}} x -y-x = 0 \]

11429

\[ {} x y^{\prime }-y \ln \left (y\right ) = 0 \]

11430

\[ {} x y^{\prime }-y \left (\ln \left (x y\right )-1\right ) = 0 \]

11431

\[ {} x y^{\prime }-y \left (x \ln \left (\frac {x^{2}}{y}\right )+2\right ) = 0 \]

11432

\[ {} x y^{\prime }-\sin \left (x -y\right ) = 0 \]

11433

\[ {} x y^{\prime }+\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

11434

\[ {} x y^{\prime }-y-\sin \left (\frac {y}{x}\right ) x = 0 \]

11435

\[ {} x y^{\prime }+x -y+\cos \left (\frac {y}{x}\right ) x = 0 \]

11436

\[ {} x y^{\prime }+x \tan \left (\frac {y}{x}\right )-y = 0 \]

11437

\[ {} x y^{\prime }-y f \left (x y\right ) = 0 \]

11438

\[ {} x y^{\prime }-y f \left (x^{a} y^{b}\right ) = 0 \]

11439

\[ {} x y^{\prime }+a y-f \left (x \right ) g \left (x^{a} y\right ) = 0 \]

11440

\[ {} y^{\prime } \left (1+x \right )+y \left (y-x \right ) = 0 \]

11441

\[ {} 2 x y^{\prime }-y-2 x^{3} = 0 \]

11442

\[ {} \left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

11443

\[ {} 3 x y^{\prime }-3 x y^{4} \ln \left (x \right )-y = 0 \]

11444

\[ {} x^{2} y^{\prime }+y-x = 0 \]

11445

\[ {} x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

11446

\[ {} x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

11447

\[ {} x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0 \]

11448

\[ {} x^{2} y^{\prime }-y^{2}-x y = 0 \]

11449

\[ {} x^{2} y^{\prime }-y^{2}-x y-x^{2} = 0 \]

11450

\[ {} x^{2} \left (y^{\prime }+y^{2}\right )+a \,x^{k}-b \left (b -1\right ) = 0 \]

11451

\[ {} x^{2} \left (y^{\prime }+y^{2}\right )+4 x y+2 = 0 \]

11452

\[ {} x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b = 0 \]

11453

\[ {} x^{2} \left (y^{\prime }-y^{2}\right )-a \,x^{2} y+a x +2 = 0 \]

11454

\[ {} x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0 \]

11455

\[ {} x^{2} \left (y^{\prime }+a y^{2}\right )+b \,x^{\alpha }+c = 0 \]

11456

\[ {} x^{2} y^{\prime }+a y^{3}-a \,x^{2} y^{2} = 0 \]

11457

\[ {} x^{2} y^{\prime }+x y^{3}+a y^{2} = 0 \]

11458

\[ {} x^{2} y^{\prime }+a \,x^{2} y^{3}+b y^{2} = 0 \]

11459

\[ {} \left (x^{2}+1\right ) y^{\prime }+x y-1 = 0 \]

11460

\[ {} \left (x^{2}+1\right ) y^{\prime }+x y-x \left (x^{2}+1\right ) = 0 \]

11461

\[ {} \left (x^{2}+1\right ) y^{\prime }+2 x y-2 x^{2} = 0 \]

11462

\[ {} \left (x^{2}+1\right ) y^{\prime }+\left (1+y^{2}\right ) \left (2 x y-1\right ) = 0 \]

11463

\[ {} \left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )-x \left (x^{2}+1\right ) \cos \left (y\right )^{2} = 0 \]

11464

\[ {} \left (x^{2}-1\right ) y^{\prime }-x y+a = 0 \]

11465

\[ {} \left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

11466

\[ {} \left (x^{2}-1\right ) y^{\prime }+y^{2}-2 x y+1 = 0 \]

11467

\[ {} \left (x^{2}-1\right ) y^{\prime }-y \left (y-x \right ) = 0 \]

11468

\[ {} \left (x^{2}-1\right ) y^{\prime }+a \left (1-2 x y+y^{2}\right ) = 0 \]

11469

\[ {} \left (x^{2}-1\right ) y^{\prime }+a x y^{2}+x y = 0 \]

11470

\[ {} \left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

11471

\[ {} \left (x^{2}-4\right ) y^{\prime }+\left (x +2\right ) y^{2}-4 y = 0 \]

11472

\[ {} \left (x^{2}-5 x +6\right ) y^{\prime }+3 x y-8 y+x^{2} = 0 \]

11473

\[ {} \left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2} = 0 \]

11474

\[ {} 2 x^{2} y^{\prime }-2 y^{2}-x y+2 a^{2} x = 0 \]

11475

\[ {} 2 x^{2} y^{\prime }-2 y^{2}-3 x y+2 a^{2} x = 0 \]

11476

\[ {} x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (1+4 x \right ) y+4 x = 0 \]

11477

\[ {} 2 x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y^{2}-x = 0 \]

11478

\[ {} 3 x^{2} y^{\prime }-7 y^{2}-3 x y-x^{2} = 0 \]

11479

\[ {} 3 \left (x^{2}-4\right ) y^{\prime }+y^{2}-x y-3 = 0 \]

11480

\[ {} \left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2} = 0 \]

11481

\[ {} x^{3} y^{\prime }-y^{2}-x^{4} = 0 \]

11482

\[ {} x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

11483

\[ {} x^{3} y^{\prime }-x^{4} y^{2}+x^{2} y+20 = 0 \]

11484

\[ {} x^{3} y^{\prime }-y^{2} x^{6}-\left (2 x -3\right ) x^{2} y+3 = 0 \]

11485

\[ {} x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

11486

\[ {} x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3} = 0 \]

11487

\[ {} x \left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right ) y^{2}-x^{2} = 0 \]

11488

\[ {} x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

11489

\[ {} 2 x \left (x^{2}-1\right ) y^{\prime }+2 \left (x^{2}-1\right ) y^{2}-\left (3 x^{2}-5\right ) y+x^{2}-3 = 0 \]

11490

\[ {} 3 x \left (x^{2}-1\right ) y^{\prime }+x y^{2}-\left (x^{2}+1\right ) y-3 x = 0 \]

11491

\[ {} \left (x^{2} a +b x +c \right ) \left (x y^{\prime }-y\right )-y^{2}+x^{2} = 0 \]

11492

\[ {} x^{4} \left (y^{\prime }+y^{2}\right )+a = 0 \]

11493

\[ {} x \left (x^{3}-1\right ) y^{\prime }-2 x y^{2}+y+x^{2} = 0 \]

11494

\[ {} \left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

11495

\[ {} \left (x^{2} a +b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

11496

\[ {} x^{7} y^{\prime }+5 y^{2} x^{3}+2 \left (x^{2}+1\right ) y^{3} = 0 \]

11497

\[ {} x^{n} y^{\prime }+y^{2}-\left (n -1\right ) x^{n -1} y+x^{2 n -2} = 0 \]

11498

\[ {} x^{n} y^{\prime }-a y^{2}-b \,x^{2 n -2} = 0 \]

11499

\[ {} x^{2 n +1} y^{\prime }-a y^{3}-b \,x^{3 n} = 0 \]

11500

\[ {} x^{m \left (n -1\right )+n} y^{\prime }-a y^{n}-b \,x^{n \left (1+m \right )} = 0 \]