| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x y^{\prime }-\sqrt {a^{2}-x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y-x \sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y-\frac {x}{\ln \left (x \right )} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y-x^{2} \sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+a y+b \,x^{n} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+x^{2}+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y^{2}+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+a y^{2}-y+b \,x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+a y^{2}-b y+c \,x^{2 b} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+a y^{2}-b y-c \,x^{\beta } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+a +x y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+x y^{2}-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+x y^{2}-y-a \,x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+a x y^{2}+2 y+b x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+a x y^{2}+b y+c x +d = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+x^{a} y^{2}+\frac {\left (a -b \right ) y}{2}+x^{b} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+a \,x^{\alpha } y^{2}+b y-c \,x^{\beta } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y^{2} \ln \left (x \right )+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+f \left (x \right ) \left (-x^{2}+y^{2}\right )-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y^{3}+3 x y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y-\sqrt {x^{2}+y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+a \sqrt {x^{2}+y^{2}}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-x \sqrt {x^{2}+y^{2}}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-x \left (y-x \right ) \sqrt {x^{2}+y^{2}}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-{\mathrm e}^{\frac {y}{x}} x -y-x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y \ln \left (y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y \left (\ln \left (x y\right )-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y \left (x \ln \left (\frac {x^{2}}{y}\right )+2\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-\sin \left (x -y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime }+\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y-\sin \left (\frac {y}{x}\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+x -y+\cos \left (\frac {y}{x}\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+x \tan \left (\frac {y}{x}\right )-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y f \left (x y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y f \left (x^{a} y^{b}\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+a y-f \left (x \right ) g \left (x^{a} y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \left (1+x \right )+y \left (y-x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime }-y-2 x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{\prime }-3 x y^{4} \ln \left (x \right )-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+y-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }-\left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }-y^{2}-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }-y^{2}-x y-x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (y^{\prime }+y^{2}\right )+a \,x^{k}-b \left (b -1\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (y^{\prime }+y^{2}\right )+4 x y+2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (y^{\prime }-y^{2}\right )-a \,x^{2} y+a x +2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (y^{\prime }+a y^{2}\right )+b \,x^{\alpha }+c = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+a y^{3}-a \,x^{2} y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+x y^{3}+a y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+a \,x^{2} y^{3}+b y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+x y-1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+x y-x \left (x^{2}+1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+2 x y-2 x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+\left (1+y^{2}\right ) \left (2 x y-1\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )-x \left (x^{2}+1\right ) \cos \left (y\right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }-x y+a = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }+y^{2}-2 x y+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }-y \left (y-x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }+a \left (1-2 x y+y^{2}\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }+a x y^{2}+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-4\right ) y^{\prime }+\left (x +2\right ) y^{2}-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-5 x +6\right ) y^{\prime }+3 x y-8 y+x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime }-2 y^{2}-x y+2 a^{2} x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime }-2 y^{2}-3 x y+2 a^{2} x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (1+4 x \right ) y+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y^{2}-x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2} y^{\prime }-7 y^{2}-3 x y-x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 \left (x^{2}-4\right ) y^{\prime }+y^{2}-x y-3 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime }-y^{2}-x^{4} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime }-y^{2}-x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime }-x^{4} y^{2}+x^{2} y+20 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime }-y^{2} x^{6}-\left (2 x -3\right ) x^{2} y+3 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right ) y^{2}-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \left (x^{2}-1\right ) y^{\prime }+2 \left (x^{2}-1\right ) y^{2}-\left (3 x^{2}-5\right ) y+x^{2}-3 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x \left (x^{2}-1\right ) y^{\prime }+x y^{2}-\left (x^{2}+1\right ) y-3 x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2} a +b x +c \right ) \left (x y^{\prime }-y\right )-y^{2}+x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{4} \left (y^{\prime }+y^{2}\right )+a = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x^{3}-1\right ) y^{\prime }-2 x y^{2}+y+x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2} a +b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{7} y^{\prime }+5 y^{2} x^{3}+2 \left (x^{2}+1\right ) y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{n} y^{\prime }+y^{2}-\left (n -1\right ) x^{n -1} y+x^{2 n -2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{n} y^{\prime }-a y^{2}-b \,x^{2 n -2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2 n +1} y^{\prime }-a y^{3}-b \,x^{3 n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{m \left (n -1\right )+n} y^{\prime }-a y^{n}-b \,x^{n \left (1+m \right )} = 0
\]
|
✓ |
✓ |
✗ |
|