| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = \frac {y^{2}}{3}+\frac {2}{3 x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-3 y+y^{2} = 4 x^{2}-4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}+\frac {1}{x^{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime } = \left (1+y^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \left (x^{2}+y^{2}+3\right ) = 2 x \left (2 y-\frac {x^{2}}{y}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x -y^{2}}{2 y \left (x +y^{2}\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x \left (x +y\right )+a^{2}\right ) y^{\prime } = y \left (x +y\right )+b^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = k y+f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {y y^{\prime }+x}{\sqrt {x^{2}+y^{2}+1}}+\frac {y-x y^{\prime }}{x^{2}+y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {\sin \left (\frac {x}{y}\right )}{y}-\frac {y \cos \left (\frac {y}{x}\right )}{x^{2}}+1+\left (\frac {\cos \left (\frac {y}{x}\right )}{x}-\frac {x \sin \left (\frac {x}{y}\right )}{y^{2}}+\frac {1}{y^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2} y^{2}-1\right ) y^{\prime }+2 x y^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a x y^{\prime }+b y+x^{m} y^{n} \left (\alpha x y^{\prime }+\beta y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 2 x y-x^{3}+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2} = x^{2} y^{2}+x^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{3} = 1+y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (1+{y^{\prime }}^{2}\right ) = 2 \alpha
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{4} = 4 y \left (-2 y+x y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y = \frac {k \left (y y^{\prime }+x \right )}{\sqrt {1+{y^{\prime }}^{2}}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x = y y^{\prime }+a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x {y^{\prime }}^{2}+{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} \left (x^{2}-1\right )-2 y y^{\prime } x +y^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y-x}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \ln \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \ln \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -x +\sqrt {x^{2}+2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -x -\sqrt {x^{2}+2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{4} = 4 y \left (-2 y+x y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = {y^{\prime }}^{2}-x y^{\prime }+\frac {x^{3}}{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime \prime }}^{2}+x^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \frac {1}{\sqrt {y}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a^{3} y^{\prime \prime \prime } y^{\prime \prime } = \sqrt {1+c^{2} {y^{\prime \prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \left (2 a -y\right ) y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = \ln \left (y\right ) y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} n \,x^{3} y^{\prime \prime } = \left (y-x y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} \left (x^{2} y^{\prime \prime }-x y^{\prime }+y\right ) = x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{2} y^{\prime \prime }-3 x y^{2} y^{\prime }+4 y^{3}+x^{6} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \left (2 x y+x^{2} y^{\prime }\right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 y y^{\prime } x +4 y^{2}-1 = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \left (x y+1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 x y+2\right ) y^{\prime }+y^{2}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x = 4 y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 x y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )^{2} y^{\prime \prime } = 2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 2 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -2 x y+y^{\prime } \left (x^{2}+2\right )-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime \prime \prime } = x^{4}+12
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y}{x^{2} \ln \left (x \right )} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|