6.196 Problems 19501 to 19600

Table 6.391: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

19501

\[ {} y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

19502

\[ {} y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

19503

\[ {} y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

19504

\[ {} y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

19505

\[ {} \left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3} \]

19506

\[ {} {\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{x} \cos \left (y\right ) y^{\prime } = y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime } \]

19507

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 0 \]

19508

\[ {} \left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

19509

\[ {} {\mathrm e}^{x} \left (1+x \right ) = \left (x \,{\mathrm e}^{x}-{\mathrm e}^{y} y\right ) y^{\prime } \]

19510

\[ {} x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0 \]

19511

\[ {} y^{\prime } = 1+3 y \tan \left (x \right ) \]

19512

\[ {} y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

19513

\[ {} y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

19514

\[ {} y^{\prime } = \frac {x +2 y+2}{y-2 x} \]

19515

\[ {} 3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0 \]

19516

\[ {} \frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime } = 0 \]

19517

\[ {} \frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}} = 0 \]

19518

\[ {} x y^{2}+y+x y^{\prime } = 0 \]

19519

\[ {} x^{2} y^{\prime \prime } = \left (3 x -2 y^{\prime }\right ) y^{\prime } \]

19520

\[ {} 3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

19521

\[ {} x \left (x^{2}+1\right ) y^{\prime }+2 y = \left (x^{2}+1\right )^{3} \]

19522

\[ {} y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1} \]

19523

\[ {} {\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime } = 0 \]

19524

\[ {} 3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime } = 0 \]

19525

\[ {} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

19526

\[ {} 3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0 \]

19527

\[ {} x^{2} y^{\prime } = x^{2}+x y+y^{2} \]

19528

\[ {} x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

19529

\[ {} \frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime } = 0 \]

19530

\[ {} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

19531

\[ {} x y^{\prime }+x y+y-1 = 0 \]

19532

\[ {} -y^{2}+x^{2} y^{\prime } = 2 x y \]

19533

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

19534

\[ {} x^{\prime }+x \cot \left (y \right ) = \sec \left (y \right ) \]

19535

\[ {} x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

19536

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

19537

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 4 x \]

19538

\[ {} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1 \]

19539

\[ {} y^{\prime \prime }-2 y^{\prime } = 6 \]

19540

\[ {} -2 y+y^{\prime \prime } = \sin \left (x \right ) \]

19541

\[ {} y^{\prime \prime } = {\mathrm e}^{x} \]

19542

\[ {} y^{\prime \prime }-2 y^{\prime } = 4 \]

19543

\[ {} -y+y^{\prime \prime } = \sin \left (x \right ) \]

19544

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

19545

\[ {} y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

19546

\[ {} -5 y-3 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

19547

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

19548

\[ {} -y+y^{\prime \prime } = 0 \]

19549

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19550

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 0 \]

19551

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

19552

\[ {} x^{2} y^{\prime \prime }-2 y = 0 \]

19553

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

19554

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

19555

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

19556

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

19557

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

19558

\[ {} y^{\prime \prime }+y = 0 \]

19559

\[ {} -y+y^{\prime \prime } = 0 \]

19560

\[ {} x y^{\prime \prime }+3 y^{\prime } = 0 \]

19561

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

19562

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19563

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

19564

\[ {} y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

19565

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

19566

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

19567

\[ {} y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

19568

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

19569

\[ {} x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

19570

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

19571

\[ {} x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

19572

\[ {} 3 y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

19573

\[ {} y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y = 0 \]

19574

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

19575

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

19576

\[ {} y^{\prime \prime }+8 y = 0 \]

19577

\[ {} 2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

19578

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

19579

\[ {} 20 y-9 y^{\prime }+y^{\prime \prime } = 0 \]

19580

\[ {} 2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

19581

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

19582

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

19583

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

19584

\[ {} 4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

19585

\[ {} 3 y+2 y^{\prime }+y^{\prime \prime } = 0 \]

19586

\[ {} y^{\prime \prime } = 4 y \]

19587

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

19588

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

19589

\[ {} 16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

19590

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

19591

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

19592

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = 0 \]

19593

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

19594

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

19595

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

19596

\[ {} y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

19597

\[ {} y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

19598

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

19599

\[ {} 2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

19600

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]