6.33 Problems 3201 to 3300

Table 6.65: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

3201

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (x \right ) \]

3202

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right ) \]

3203

\[ {} y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right ) \]

3204

\[ {} y^{\prime \prime \prime \prime }-y = x^{2} \cos \left (x \right ) \]

3205

\[ {} y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

3206

\[ {} y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

3207

\[ {} -y+y^{\prime \prime } = x^{2} \cos \left (x \right ) \]

3208

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

3209

\[ {} y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2} \]

3210

\[ {} 2 y^{\prime \prime }+3 y^{\prime }-2 y = x^{2} {\mathrm e}^{x} \]

3211

\[ {} y^{\prime }+y^{\prime \prime \prime } = \sin \left (x \right ) \]

3212

\[ {} y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right ) \]

3213

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right ) \]

3214

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = x^{2} \cos \left (x \right ) \]

3215

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

3216

\[ {} -y+y^{\prime \prime } = \sin \left (2 x \right ) x \]

3217

\[ {} y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

3218

\[ {} y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

3219

\[ {} y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

3220

\[ {} y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

3221

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

3222

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

3223

\[ {} 4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

3224

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

3225

\[ {} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }-18 y = \ln \left (x \right ) \]

3226

\[ {} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = \ln \left (x^{2}\right ) \]

3227

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{3} \]

3228

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

3229

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

3230

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

3231

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x^{2} \ln \left (x \right ) \]

3232

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (x -1\right ) \ln \left (x \right ) \]

3233

\[ {} 4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

3234

\[ {} 3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 x y^{\prime }+10 y = \frac {4}{x^{2}} \]

3235

\[ {} x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 x y^{\prime }-6 y = \cos \left (\ln \left (x \right )\right ) \]

3236

\[ {} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

3237

\[ {} [x^{\prime }\left (t \right )-x \left (t \right ) = \cos \left (t \right ), y \left (t \right )+y^{\prime }\left (t \right ) = 4 t] \]

3238

\[ {} [x^{\prime }\left (t \right )+5 x \left (t \right ) = 3 t^{2}, y \left (t \right )+y^{\prime }\left (t \right ) = {\mathrm e}^{3 t}] \]

3239

\[ {} [x^{\prime }\left (t \right )+2 x \left (t \right ) = 3 t, x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (2 t \right )] \]

3240

\[ {} [x^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = 2 \sin \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 3 y \left (t \right )-3 x \left (t \right )] \]

3241

\[ {} [2 x^{\prime }\left (t \right )+3 x \left (t \right )-y \left (t \right ) = {\mathrm e}^{t}, 5 x \left (t \right )-3 y^{\prime }\left (t \right ) = y \left (t \right )+2 t] \]

3242

\[ {} [5 y^{\prime }\left (t \right )-3 x^{\prime }\left (t \right )-5 y \left (t \right ) = 5 t, 3 x^{\prime }\left (t \right )-5 y^{\prime }\left (t \right )-2 x \left (t \right ) = 0] \]

3243

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), z^{\prime }\left (t \right ) = 3 y \left (t \right )-2 z \left (t \right )] \]

3244

\[ {} y^{\prime \prime } = \cos \left (t \right ) \]

3245

\[ {} y^{\prime \prime } = k^{2} y \]

3246

\[ {} x^{\prime \prime }+k^{2} x = 0 \]

3247

\[ {} y^{3} y^{\prime \prime }+4 = 0 \]

3248

\[ {} x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

3249

\[ {} x y^{\prime \prime } = x^{2}+1 \]

3250

\[ {} \left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

3251

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (1+y^{\prime }\right ) x = 0 \]

3252

\[ {} y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

3253

\[ {} x y^{\prime \prime }+x = y^{\prime } \]

3254

\[ {} x^{\prime \prime }+t x^{\prime } = t^{3} \]

3255

\[ {} x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

3256

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

3257

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 1 \]

3258

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

3259

\[ {} y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

3260

\[ {} y^{\prime \prime } = y y^{\prime } \]

3261

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3262

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

3263

\[ {} y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

3264

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

3265

\[ {} y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

3266

\[ {} y^{\prime \prime } = y \]

3267

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

3268

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

3269

\[ {} y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

3270

\[ {} y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

3271

\[ {} \left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

3272

\[ {} y^{\prime \prime } = \tan \left (x \right ) \sec \left (x \right ) \]

3273

\[ {} 2 y^{\prime \prime } = {\mathrm e}^{y} \]

3274

\[ {} y^{\prime \prime } = y^{3} \]

3275

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

3276

\[ {} y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]

3277

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3278

\[ {} y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

3279

\[ {} \left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

3280

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

3281

\[ {} 2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

3282

\[ {} x^{\prime \prime }-k^{2} x = 0 \]

3283

\[ {} y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

3284

\[ {} \left (-{\mathrm e}^{x}+1\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

3285

\[ {} 4 y^{2} = x^{2} {y^{\prime }}^{2} \]

3286

\[ {} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

3287

\[ {} 1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \]

3288

\[ {} x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

3289

\[ {} \left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

3290

\[ {} x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \]

3291

\[ {} y^{2} {y^{\prime }}^{2}+y y^{\prime } x -2 x^{2} = 0 \]

3292

\[ {} y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +2 y^{2} = x^{2} \]

3293

\[ {} {y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

3294

\[ {} y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

3295

\[ {} y = y^{\prime } x \left (1+y^{\prime }\right ) \]

3296

\[ {} y = x +3 \ln \left (y^{\prime }\right ) \]

3297

\[ {} y \left (1+{y^{\prime }}^{2}\right ) = 2 \]

3298

\[ {} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

3299

\[ {} {y^{\prime }}^{2}+y^{2} = 1 \]

3300

\[ {} x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]