43.1.9 problem 3(a)

Internal problem ID [8874]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 1.3 Introduction– Linear equations of First Order. Page 38
Problem number : 3(a)
Date solved : Tuesday, September 30, 2025 at 05:58:12 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }+5 y&=2 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 12
ode:=diff(y(x),x)+5*y(x) = 2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2}{5}+{\mathrm e}^{-5 x} c_1 \]
Mathematica. Time used: 0.016 (sec). Leaf size: 24
ode=D[y[x],x]+5*y[x]==2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2}{5}+c_1 e^{-5 x}\\ y(x)&\to \frac {2}{5} \end{align*}
Sympy. Time used: 0.070 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*y(x) + Derivative(y(x), x) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 5 x} + \frac {2}{5} \]