43.1.10 problem 4(a)

Internal problem ID [8875]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 1.3 Introduction– Linear equations of First Order. Page 38
Problem number : 4(a)
Date solved : Tuesday, September 30, 2025 at 05:58:13 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} y^{\prime \prime }&=3 x +1 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x) = 3*x+1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{2} x^{3}+\frac {1}{2} x^{2}+c_1 x +c_2 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 25
ode=D[y[x],{x,2}]==3*x+1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (x^3+x^2+2 c_2 x+2 c_1\right ) \end{align*}
Sympy. Time used: 0.033 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + \frac {x^{3}}{2} + \frac {x^{2}}{2} \]