43.10.3 problem 1(c)

Internal problem ID [8947]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 89
Problem number : 1(c)
Date solved : Tuesday, September 30, 2025 at 06:00:25 PM
CAS classification : [[_high_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=\cos \left (x \right ) \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 67
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+16*y(x) = cos(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+c_1 \,{\mathrm e}^{\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right )+c_4 \,{\mathrm e}^{-\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+c_3 \,{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right )+\frac {\cos \left (x \right )}{17} \]
Mathematica. Time used: 0.205 (sec). Leaf size: 335
ode=D[y[x],{x,4}]+16*y[x]==Cos[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-\sqrt {2} x} \left (e^{2 \sqrt {2} x} \cos \left (\sqrt {2} x\right ) \int _1^x-\frac {e^{-\sqrt {2} K[1]} \cos (K[1]) \left (\cos \left (\sqrt {2} K[1]\right )+\sin \left (\sqrt {2} K[1]\right )\right )}{16 \sqrt {2}}dK[1]+\cos \left (\sqrt {2} x\right ) \int _1^x\frac {e^{\sqrt {2} K[2]} \cos (K[2]) \left (\cos \left (\sqrt {2} K[2]\right )-\sin \left (\sqrt {2} K[2]\right )\right )}{16 \sqrt {2}}dK[2]+\sin \left (\sqrt {2} x\right ) \int _1^x\frac {e^{\sqrt {2} K[3]} \cos (K[3]) \left (\cos \left (\sqrt {2} K[3]\right )+\sin \left (\sqrt {2} K[3]\right )\right )}{16 \sqrt {2}}dK[3]+e^{2 \sqrt {2} x} \sin \left (\sqrt {2} x\right ) \int _1^x\frac {e^{-\sqrt {2} K[4]} \cos (K[4]) \left (\cos \left (\sqrt {2} K[4]\right )-\sin \left (\sqrt {2} K[4]\right )\right )}{16 \sqrt {2}}dK[4]+c_1 e^{2 \sqrt {2} x} \cos \left (\sqrt {2} x\right )+c_2 \cos \left (\sqrt {2} x\right )+c_3 \sin \left (\sqrt {2} x\right )+c_4 e^{2 \sqrt {2} x} \sin \left (\sqrt {2} x\right )\right ) \end{align*}
Sympy. Time used: 0.111 (sec). Leaf size: 65
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(16*y(x) - cos(x) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (\sqrt {2} x \right )} + C_{2} \cos {\left (\sqrt {2} x \right )}\right ) e^{- \sqrt {2} x} + \left (C_{3} \sin {\left (\sqrt {2} x \right )} + C_{4} \cos {\left (\sqrt {2} x \right )}\right ) e^{\sqrt {2} x} + \frac {\cos {\left (x \right )}}{17} \]