43.10.4 problem 1(d)

Internal problem ID [8948]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 89
Problem number : 1(d)
Date solved : Tuesday, September 30, 2025 at 06:00:25 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 27
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-4*diff(diff(diff(y(x),x),x),x)+6*diff(diff(y(x),x),x)-4*diff(y(x),x)+y(x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (\frac {1}{24} x^{4}+c_1 +c_2 x +c_3 \,x^{2}+c_4 \,x^{3}\right ) \]
Mathematica. Time used: 0.007 (sec). Leaf size: 39
ode=D[y[x],{x,4}]-4*D[y[x],{x,3}]+6*D[y[x],{x,2}]-4*D[y[x],x]+y[x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{24} e^x \left (x^4+24 c_4 x^3+24 c_3 x^2+24 c_2 x+24 c_1\right ) \end{align*}
Sympy. Time used: 0.172 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - exp(x) - 4*Derivative(y(x), x) + 6*Derivative(y(x), (x, 2)) - 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + x \left (C_{3} + x \left (C_{4} + \frac {x}{24}\right )\right )\right )\right ) e^{x} \]