44.10.11 problem 1(k)

Internal problem ID [9266]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number : 1(k)
Date solved : Tuesday, September 30, 2025 at 06:15:50 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 36
ode:=diff(diff(y(x),x),x)+diff(y(x),x) = 10*x^4+2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -{\mathrm e}^{-x} c_1 -120 x^{2}+40 x^{3}-10 x^{4}+2 x^{5}+242 x +c_2 \]
Mathematica. Time used: 0.077 (sec). Leaf size: 40
ode=D[y[x],{x,2}]+D[y[x],x]==10*x^4+2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 2 x^5-10 x^4+40 x^3-120 x^2+242 x-c_1 e^{-x}+c_2 \end{align*}
Sympy. Time used: 0.094 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-10*x**4 + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- x} + 2 x^{5} - 10 x^{4} + 40 x^{3} - 120 x^{2} + 242 x \]