Internal
problem
ID
[9267]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
2.
Second-Order
Linear
Equations.
Section
2.2.
THE
METHOD
OF
UNDETERMINED
COEFFICIENTS.
Page
67
Problem
number
:
3(a)
Date
solved
:
Tuesday, September 30, 2025 at 06:15:51 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+4*y(x) = 4*cos(2*x)+6*cos(x)+8*x^2-4*x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+4*y[x]==4*Cos[2*x]+6*Cos[x]+8*x^2-4*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*x**2 + 4*x + 4*y(x) - 6*cos(x) - 4*cos(2*x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)