Internal
problem
ID
[9268]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
2.
Second-Order
Linear
Equations.
Section
2.2.
THE
METHOD
OF
UNDETERMINED
COEFFICIENTS.
Page
67
Problem
number
:
3(b)
Date
solved
:
Tuesday, September 30, 2025 at 06:15:52 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+9*y(x) = 2*sin(3*x)+4*sin(x)-26*exp(-2*x)+27*x^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+9*y[x]==2*Sin[3*x]+4*Sin[x]-26*Exp[-2*x]+27*x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-27*x**3 + 9*y(x) - 4*sin(x) - 2*sin(3*x) + Derivative(y(x), (x, 2)) + 26*exp(-2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)