Internal
problem
ID
[9287]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
2.
Second-Order
Linear
Equations.
Section
2.3.
THE
METHOD
OF
VARIATION
OF
PARAMETERS.
Page
71
Problem
number
:
5(b)
Date
solved
:
Tuesday, September 30, 2025 at 06:16:08 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=(x^2+x)*diff(diff(y(x),x),x)+(-x^2+2)*diff(y(x),x)-(x+2)*y(x) = x*(1+x)^2; dsolve(ode,y(x), singsol=all);
ode=(x^2+x)*D[y[x],{x,2}]+(2-x^2)*D[y[x],x]-(2+x)*y[x]==x*(x+1)^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(x + 1)**2 + (2 - x**2)*Derivative(y(x), x) - (x + 2)*y(x) + (x**2 + x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3 + x**2*Derivative(y(x), (x, 2)) - 2*x**2 - x*y(x) + x*Derivative(y(x), (x, 2)) - x - 2*y(x))/(x**2 - 2) cannot be solved by the factorable group method