44.11.18 problem 5(c)

Internal problem ID [9288]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number : 5(c)
Date solved : Tuesday, September 30, 2025 at 06:16:09 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y&=\left (1-x \right )^{2} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 16
ode:=(1-x)*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = (1-x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 x +{\mathrm e}^{x} c_1 +x^{2}+1 \]
Mathematica. Time used: 0.137 (sec). Leaf size: 244
ode=(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==(1-x)^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \exp \left (\int _1^x\frac {K[1]-2}{2 (K[1]-1)}dK[1]-\frac {1}{2} \int _1^x-\frac {K[2]}{K[2]-1}dK[2]\right ) \left (\int _1^x\exp \left (\int _1^{K[4]}\frac {K[1]-2}{2 (K[1]-1)}dK[1]+\frac {1}{2} \int _1^{K[4]}-\frac {K[2]}{K[2]-1}dK[2]\right ) (K[4]-1) \int _1^{K[4]}\exp \left (-2 \int _1^{K[3]}\frac {K[1]-2}{2 (K[1]-1)}dK[1]\right )dK[3]dK[4]+\int _1^x\exp \left (-2 \int _1^{K[3]}\frac {K[1]-2}{2 (K[1]-1)}dK[1]\right )dK[3] \left (\int _1^x-\exp \left (\int _1^{K[5]}\frac {K[1]-2}{2 (K[1]-1)}dK[1]+\frac {1}{2} \int _1^{K[5]}-\frac {K[2]}{K[2]-1}dK[2]\right ) (K[5]-1)dK[5]+c_2\right )+c_1\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - (1 - x)**2 + (1 - x)*Derivative(y(x), (x, 2)) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(x + Derivative(y(x), (x, 2)) - 2) + y(x) - Derivative(y(x), (x, 2)) + 1)/x cannot be solved by the factorable group method