Internal
problem
ID
[9789]
Book
:
Elementary
differential
equations.
By
Earl
D.
Rainville,
Phillip
E.
Bedient.
Macmilliam
Publishing
Co.
NY.
6th
edition.
1981.
Section
:
CHAPTER
16.
Nonlinear
equations.
Section
101.
Independent
variable
missing.
EXERCISES
Page
324
Problem
number
:
16
Date
solved
:
Tuesday, September 30, 2025 at 06:41:17 PM
CAS
classification
:
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]
With initial conditions
ode:=diff(diff(y(x),x),x) = x*diff(y(x),x)^2; ic:=[y(2) = 1/4*Pi, D(y)(2) = -1/4]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]==x*(D[y[x],x])^2; ic={y[2]==1/4*Pi,Derivative[1][y][2]==-1/4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) ics = {y(2): pi/4, Subs(Derivative(y(x), x), x, 2): -1/4} dsolve(ode,func=y(x),ics=ics)