Internal
problem
ID
[9790]
Book
:
Elementary
differential
equations.
By
Earl
D.
Rainville,
Phillip
E.
Bedient.
Macmilliam
Publishing
Co.
NY.
6th
edition.
1981.
Section
:
CHAPTER
16.
Nonlinear
equations.
Section
101.
Independent
variable
missing.
EXERCISES
Page
324
Problem
number
:
17
Date
solved
:
Tuesday, September 30, 2025 at 06:41:18 PM
CAS
classification
:
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]
With initial conditions
ode:=diff(diff(y(x),x),x) = x*diff(y(x),x)^2; ic:=[y(0) = 1, D(y)(0) = 1/2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]==x*(D[y[x],x])^2; ic={y[0]==1,Derivative[1][y][0] ==1/2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 1/2} dsolve(ode,func=y(x),ics=ics)