51.1.3 problem 3

Internal problem ID [10273]
Book : First order enumerated odes
Section : section 1
Problem number : 3
Date solved : Tuesday, September 30, 2025 at 07:16:25 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=x \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 11
ode:=diff(y(x),x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}}{2}+c_1 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 15
ode=D[y[x],x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^2}{2}+c_1 \end{align*}
Sympy. Time used: 0.022 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {x^{2}}{2} \]