51.1.4 problem 4

Internal problem ID [10274]
Book : First order enumerated odes
Section : section 1
Problem number : 4
Date solved : Tuesday, September 30, 2025 at 07:16:26 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=1 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 7
ode:=diff(y(x),x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x +c_1 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 9
ode=D[y[x],x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x+c_1 \end{align*}
Sympy. Time used: 0.015 (sec). Leaf size: 5
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + x \]