51.1.5 problem 5

Internal problem ID [10275]
Book : First order enumerated odes
Section : section 1
Problem number : 5
Date solved : Tuesday, September 30, 2025 at 07:16:27 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=a x \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x) = a*x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {a \,x^{2}}{2}+c_1 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 16
ode=D[y[x],x]==a*x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {a x^2}{2}+c_1 \end{align*}
Sympy. Time used: 0.063 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*x + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {a x^{2}}{2} \]