51.1.25 problem 25

Internal problem ID [10295]
Book : First order enumerated odes
Section : section 1
Problem number : 25
Date solved : Tuesday, September 30, 2025 at 07:18:23 PM
CAS classification : [_quadrature]

\begin{align*} f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi &=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 9
ode:=f(x)*sin(x)*y(x)*x*diff(y(x),x)*Pi = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= c_1 \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 12
ode=f(x)*Sin[x]*y[x]*x*D[y[x],x]*Pi==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 0\\ y(x)&\to c_1 \end{align*}
Sympy. Time used: 0.084 (sec). Leaf size: 3
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(pi*x*f(x)*y(x)*sin(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \]