51.1.26 problem 26

Internal problem ID [10296]
Book : First order enumerated odes
Section : section 1
Problem number : 26
Date solved : Tuesday, September 30, 2025 at 07:18:24 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=\sin \left (x \right )+y \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(y(x),x) = sin(x)+y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2}+{\mathrm e}^{x} c_1 \]
Mathematica. Time used: 0.025 (sec). Leaf size: 29
ode=D[y[x],x]==Sin[x]+y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x \left (\int _1^xe^{-K[1]} \sin (K[1])dK[1]+c_1\right ) \end{align*}
Sympy. Time used: 0.070 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) - sin(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x} - \frac {\sin {\left (x \right )}}{2} - \frac {\cos {\left (x \right )}}{2} \]