| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{3}+\left (y+2 x \right ) y y^{\prime }+y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y+x y^{\prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime }+x y^{\prime \prime } = -y^{2}+x^{2} y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y = x \cos \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 x^{2}+6 x y^{2}+\left (6 x^{2}+4 y^{3}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = y^{3}+x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = t^{2} x^{4}+1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = \sin \left (t x\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = \arctan \left (x\right )+t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 x^{2}-y+\left (4 y^{3}-x \right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x +\sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+\left (a x y+y^{4}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {x^{\prime }}^{2} = x^{2}+t^{2}-1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+\frac {x^{\prime }}{t}+q \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+\frac {\left (t^{5}+1\right ) x}{t^{4}+5} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+\sqrt {t^{6}+3 t^{5}+1}\, x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }-p \left (t \right ) x = q \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime } \left (x-1\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime \prime }-3 x^{\prime }+k x = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\left (5\right )}+x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-7 x \left (t \right ) y \left (t \right )-a x \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+4 x \left (t \right ) y \left (t \right )-a y \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x^{3}-x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x^{3}-x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x^{3}-x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x-x^{3}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+x+8 x^{7} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+x+\frac {x^{2}}{3} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x+3 x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x+3 x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x+3 x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} t x^{\prime \prime } = t x+1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = 0
\]
|
✗ |
✗ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -2 y \left (t \right )-x \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+6 x^{5} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+\lambda x-x^{3} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+4 x^{3} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -x^{\prime \prime } = 1-x-x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime }+x = {\mathrm e}^{-x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime }+x = {\mathrm e}^{-x^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime } = \frac {1}{\sqrt {1+x^{2}}}-x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime } = 2 x-x^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -x^{\prime \prime } = \arctan \left (x\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+x y+y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x u^{\prime \prime }-\left (x^{2} {\mathrm e}^{x}+1\right ) u^{\prime }-x^{2} {\mathrm e}^{x} u = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+x +x^{2} \cos \left (x \right )-\left (1+4 x \cos \left (x \right )\right ) y+2 y^{2} \cos \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y = f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+x y+y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y {y^{\prime }}^{2}-\left (x y+x +y^{2}\right ) y^{\prime }+x^{2}+x y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right )+2 x \left (t \right ) y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = \sin \left (2 x \left (t \right )\right )-5 y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )^{2}-6 y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )^{3}-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y = \left (2 x^{2} y^{3}-x \right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{3} \left (y y^{\prime }+x \right ) = \left (x^{2}+y^{2}\right )^{3} y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 x^{2}-2 x y+\left (4 y^{3}-x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a x y-b +\left (c x y-d \right ) x y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+3 {y^{\prime }}^{2} = x +y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 x +y y^{\prime } \left (4 {y^{\prime }}^{2}+6\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5} = p
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-3 y y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+\sin \left (y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x \sin \left (y\right )+{\mathrm e}^{x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime \prime }+x y^{\prime }+y = x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (1+x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+2 y = x^{2}+x +1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+2 x y^{\prime }+y = 4 x y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime }+y = 5 \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime } = {\mathrm e}^{t}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [w^{\prime \prime }\left (t \right )+y \left (t \right )+z \left (t \right ) = -1, w \left (t \right )+y^{\prime \prime }\left (t \right )-z \left (t \right ) = 0, -w \left (t \right )-y^{\prime }\left (t \right )+z^{\prime \prime }\left (t \right ) = 0]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )-5 z \left (t \right )+3, z^{\prime }\left (t \right ) = y \left (t \right )+2 z \left (t \right )]
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {s^{\prime \prime \prime }}^{2}+{s^{\prime \prime }}^{3} = s-3 t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x y = \sin \left (y^{\prime \prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {| y^{\prime }|}+1 = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x -2 y}{y-2 x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}-y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y \csc \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{\sqrt {x^{2}+4 y^{2}-4}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+4 y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y \left (x +y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|