| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{2} y^{3}+2 x y^{2}+y+\left (y^{2} x^{3}-2 x^{2} y+x \right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }-y = 1
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2} \left (2+x y^{\prime }-4 y^{2} y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = \sin \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x \left (t \right ) y^{\prime }\left (t \right )+y \left (t \right ) x^{\prime }\left (t \right ) = t^{2}, 2 x^{\prime \prime }\left (t \right )-y^{\prime }\left (t \right ) = 5 t]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [t^{2} y^{\prime \prime }\left (t \right )+t z^{\prime }\left (t \right )+z \left (t \right ) = t, t y^{\prime }\left (t \right )+z \left (t \right ) = \ln \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x} = \frac {y^{3}}{x^{3}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime }+y = 3
\]
|
✗ |
✗ |
✓ |
|
| \[
{} y y^{\prime } = y+x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{4}+\left (x^{2}-3 y\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{2} y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right )^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y+1+y^{2} y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+\sqrt {y} = 3 x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y+x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }-x y^{\prime }+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+y = 2
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }-7 \cos \left (x \right ) y^{\prime }+y = {\mathrm e}^{-x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } \cos \left (x \right )+y = \sin \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \left (1-3 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+9 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (3+9 x \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (4 x +2\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 x y^{\prime \prime \prime }-4 x y = \cos \left (y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-3 x y^{\prime \prime }+4 y = x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (4 x +2\right ) y = {\mathrm e}^{2 x} \left (1-2 x \ln \left (x \right )\right )^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left [x_{1}^{\prime }\left (t \right ) = 2 \sin \left (t \right ) x_{1} \left (t \right )+\ln \left (t \right ) x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )}{t -2}+\frac {{\mathrm e}^{t} x_{2} \left (t \right )}{t +1}\right ]
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+9 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-6 y \left (t \right )+x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )-x \left (t \right ) y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{2}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+\left (x \left (t \right )^{2}-y \left (t \right )^{2}\right )^{5}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right )+x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )+y \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )-x \left (t \right )^{2}+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -y \left (t \right )+2 x \left (t \right ) y \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-x \left (t \right )^{2}+2 y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+x \left (t \right )^{2} y \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 3 y \left (t \right )-x \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x^{3} y+\left (2 x^{2} y^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {x y+3}{5 x -y}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 x y+3 y}{x^{2}+2 y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sec \left (x -2 y\right )^{2}+\cos \left (3 y+x \right )-3 \sin \left (3 x \right )+\left (3 \cos \left (3 y+x \right )-2 \sec \left (x -2 y\right )^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \frac {8 x^{4} y+12 y^{2} x^{3}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{x^{2} y^{4}+1} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3}+y^{2}+\left (x y-3 x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 a^{2}-r^{2}\right ) r^{\prime } = r^{3} \sin \left (\theta \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x +\sin \left (y\right )-\cos \left (y\right )-x \cos \left (y\right ) \left (2 x \sin \left (y\right )+1\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {1}{\left (1-x y\right )^{2}}+\left (y^{2}+\frac {x^{2}}{\left (1-x y\right )^{2}}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{2}+x \left (x^{2} y^{2}+2 x +y\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2} y^{2}-1\right ) y+x \left (x^{2} y+2 x +y\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y \left (x^{3} y^{3}+2 x^{2}-y\right )+x^{3} \left (x y^{3}-2\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y = x^{6} {y^{\prime }}^{3}-x y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{3} {y^{\prime }}^{3}-x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} t y^{\prime } = y+\sqrt {t^{2}-y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y+2 t +2 t y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 t^{2}-y+\left (t +y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 t y+\left (t^{2}+3 y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{4} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\left (5\right )}+t y^{\prime \prime }-3 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+t y^{\prime }+\left (t^{2}+1\right )^{2} y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {y^{\prime }}+y = t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y = \sqrt {t}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y+t \sin \left (y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (t \right ) y^{\prime \prime }+y = \cos \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+t^{2} y = \cos \left (t \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t \left (t^{2}-4\right ) y^{\prime \prime }+y = {\mathrm e}^{t}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y = f \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [y_{1}^{\prime }\left (t \right ) = t \sin \left (y_{1} \left (t \right )\right )-y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )+t \cos \left (y_{2} \left (t \right )\right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [y_{1}^{\prime }\left (t \right ) = 3 \sec \left (t \right ) y_{1} \left (t \right )+5 \sec \left (t \right ) y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = -\sec \left (t \right ) y_{1} \left (t \right )-3 \sec \left (t \right ) y_{2} \left (t \right )]
\]
|
✗ |
✓ |
✓ |
|