Internal
problem
ID
[11301]
Book
:
Collection
of
Kovacic
problems
Section
:
section
2.
Solution
found
using
all
possible
Kovacic
cases
Problem
number
:
8
Date
solved
:
Tuesday, September 30, 2025 at 07:37:45 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-x)*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-x)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) + (x**2 - x)*Derivative(y(x), (x, 2)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*Derivative(y(x), (x, 2)) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - y(x)/x cannot be solved by the factorable group method