Internal
problem
ID
[11302]
Book
:
Collection
of
Kovacic
problems
Section
:
section
2.
Solution
found
using
all
possible
Kovacic
cases
Problem
number
:
9
Date
solved
:
Tuesday, September 30, 2025 at 07:37:45 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(-x^2+2)*diff(diff(y(x),x),x)-x*(4*x^2+3)*diff(y(x),x)+(-2*x^2+2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(2-x^2)*D[y[x],{x,2}] - x*(3+4*x^2)*D[y[x],x] + (2-2*x^2)*y[x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(2 - x**2)*Derivative(y(x), (x, 2)) - x*(4*x**2 + 3)*Derivative(y(x), x) + (2 - 2*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False