54.2.37 problem 613

Internal problem ID [11911]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 613
Date solved : Tuesday, September 30, 2025 at 11:39:44 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{\prime }&=\frac {x +y+F \left (-\frac {-y+x \ln \left (x \right )}{x}\right ) x^{2}}{x} \end{align*}
Maple. Time used: 0.024 (sec). Leaf size: 34
ode:=diff(y(x),x) = (x+y(x)+F(-(-y(x)+x*ln(x))/x)*x^2)/x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= x \left (\operatorname {RootOf}\left (F \left (\textit {\_Z} \right )\right )+\ln \left (x \right )\right ) \\ y &= \left (\ln \left (x \right )+\operatorname {RootOf}\left (-x +\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} +c_1 \right )\right ) x \\ \end{align*}
Mathematica. Time used: 0.135 (sec). Leaf size: 226
ode=D[y[x],x] == (x + x^2*F[(-(x*Log[x]) + y[x])/x] + y[x])/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {x F\left (\frac {K[2]-x \log (x)}{x}\right ) \int _1^x\left (-\frac {K[2] F''\left (\frac {K[2]-K[1] \log (K[1])}{K[1]}\right )}{F\left (\frac {K[2]-K[1] \log (K[1])}{K[1]}\right )^2 K[1]^3}-\frac {F''\left (\frac {K[2]-K[1] \log (K[1])}{K[1]}\right )}{F\left (\frac {K[2]-K[1] \log (K[1])}{K[1]}\right )^2 K[1]^2}+\frac {1}{F\left (\frac {K[2]-K[1] \log (K[1])}{K[1]}\right ) K[1]^2}\right )dK[1]+1}{x F\left (\frac {K[2]-x \log (x)}{x}\right )}dK[2]+\int _1^x\left (\frac {y(x)}{F\left (\frac {y(x)-K[1] \log (K[1])}{K[1]}\right ) K[1]^2}+\frac {1}{F\left (\frac {y(x)-K[1] \log (K[1])}{K[1]}\right ) K[1]}+1\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F = Function("F") 
ode = Eq(Derivative(y(x), x) - (x**2*F((-x*log(x) + y(x))/x) + x + y(x))/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x*F(-log(x) + y(x)/x) + Derivative(y(x), x) - 1 - y(x)/x cannot be solved by the factorable group method